設(shè)拋物線上一點(diǎn)軸的距離是,則點(diǎn)到該拋物線焦點(diǎn)的距離是____.


試題分析:如圖,作垂直拋物線的準(zhǔn)線于,則,由拋物線的定義得點(diǎn)到該拋物線焦點(diǎn)的距離
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

極坐標(biāo)系中橢圓C的方程為以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,
直線:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn).設(shè)直線的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)的動(dòng)直線,與橢圓)相交于,兩點(diǎn). 當(dāng)軸時(shí),,當(dāng)軸時(shí),
(Ⅰ)求橢圓的方程;
(Ⅱ)若的中點(diǎn)為,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱
點(diǎn)為(不重合) 試問:直線軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是雙曲線與橢圓的公共焦點(diǎn),點(diǎn)A是在第一象限的公共點(diǎn).若,則的離心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)D為極點(diǎn),以x軸正半軸為極軸,曲線Cl的極坐標(biāo)方程為,曲線C2的參數(shù)方程為為參數(shù))。
(1)當(dāng)時(shí),求曲線Cl與C2公共點(diǎn)的直角坐標(biāo); 
(2)若,當(dāng)變化時(shí),設(shè)曲線C1與C2的公共點(diǎn)為A,B,試求AB中點(diǎn)M軌跡的極坐標(biāo)方程,并指出它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰直角中,,點(diǎn)在線段上.

(Ⅰ) 若,求的長(zhǎng);
(Ⅱ)若點(diǎn)在線段上,且,問:當(dāng)取何值時(shí),的面積最?并求出面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案