精英家教網(wǎng)已知M=
1
0
1-x2
dx,N=
π
2
0
cosxdx
,由如程序框圖輸出的S=( 。
A、1
B、
π
2
C、
π
4
D、-1
分析:先根據(jù)定積分幾何意義求出M,然后根據(jù)定積分的運算公式求出N,最后根據(jù)選擇結構進行求解即可.
解答:解:M=
1
0
1-x2
dx
=
1
4
π×12
=
π
4

N=
π
2
0
cosxdx
=sinx
|
π
2
0
=1
M<N,不滿足條件M>N則S=M=
π
4

故選C
點評:本題主要考查了以選擇結構為載體考查定積分的應用,同時考查了計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•漳州模擬)本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•閔行區(qū)二模)(文)已知f(x)=
.
sinx10
mcosx10
-101
.
的最大值為2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:漳州模擬 題型:解答題

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案