已知橢圓的左、右焦點分別為、,為原點.
(1)如圖1,點為橢圓上的一點,是的中點,且,求點到軸的距離;
(2)如圖2,直線與橢圓相交于、兩點,若在橢圓上存在點,使四邊形為平行四邊形,求的取值范圍.
(1);(2).
【解析】
試題分析:(1)先設點的坐標,并利用點的坐標來表示點的坐標,利用以及點在橢圓上列方程組求解點的坐標,從而求出點到軸的距離;(2)先設點、,利用為平行四邊形,得到,將直線方程與橢圓方程聯(lián)立,結合韋達定理與點在橢圓上這一條件,列相應等式求出實數(shù)的取值范圍.
試題解析:(1)由已知得、,
設,則的中點為,
,,即,
整理得,①,又有,②
由①②聯(lián)立解得或(舍)
點到軸的距離為;
(2)設,,,
四邊形是平行四邊形
線段的中點即為線段的中點,即,,
點在橢圓上,,
即,
化簡得,
由得,
由得,④
且,代入③式得,
整理得代入④式得,又,或,
的取值范圍是.
考點:1.直線與橢圓的位置關系;2.韋達定理
科目:高中數(shù)學 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的左、右焦點分別為,其右準線上上存在點(點在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點到兩焦點的距離之和為,求的內切圓的方程.查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測考試理科數(shù)學試卷 題型:解答題
已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設兩直線的斜率分別為,,且,證明:直線過定點().
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省三明市高三上學期三校聯(lián)考數(shù)學理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點分別為F1、F2,其中
F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年云南省德宏州高三高考復習數(shù)學試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為、,離心率,右準線方程為.
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com