已知半徑為2的圓的圓心C在x軸上,圓心C的橫坐標(biāo)是非負(fù)整數(shù),且與直線4x+3y+10=0相切.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與圓相交于P、Q兩點(diǎn),若
OP
OQ
=-2,求k的值;
(Ⅲ)已知直線l:y=kx+1,過(guò)點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PQMN面積的最大值.
分析:(Ⅰ)設(shè)圓心M的坐標(biāo)為(m,0),且m是整數(shù),由圓C與已知直線垂直,得到圓心到直線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于m的方程,求出方程的解得到m的值,進(jìn)而確定出圓C的方程;
(Ⅱ)
OP
OQ
=-2
可求得∠POQ,進(jìn)而求出圓心到直l:kx-y+1=0的距離,再去求k.
(Ⅲ)設(shè)圓心O到直線l,l1的距離分別為d,d1,四邊形PMQN的面積S,直線l,l1都經(jīng)過(guò)點(diǎn)(0,1),且l⊥l1,根據(jù)題勾股定理,知d12+d2=1,又根據(jù)垂徑定理和勾股定理,得到|PQ|=2,|MN|=2,由此能求出四邊形PMQN面積的大值.
解答:解:(1)設(shè)圓心為M(m,0)(m∈Z),
∵圓C與直線4x+3y+10=0相切,且半徑為2,
∴圓心,到直線4x+3y+10=0的距離d=r,即
|4m+10|
5
=2
,即|4m+10|=10,
∵m圓心C的橫坐標(biāo)是非負(fù)整數(shù),∴m=0,
則所求圓的方程為x2+y2=4;
(Ⅱ)因?yàn)椋?span id="m7bwnhq" class="MathJye">
OP
OQ
=2×2cos
OP
,
OQ
=-2,
所以,COS∠POQ=-
1
2
,∠POQ=120°,
所以圓心到直l:kx-y+1=0的距離d=1,d=
1
1+k2
,所以 k=0.
(Ⅲ)設(shè)圓心O到直線l,l1的距離分別為d,d1,
四邊形PMQN的面積S,
∵直線l,l1都經(jīng)過(guò)點(diǎn)(0,1),且l⊥l1,

根據(jù)題勾股定理,知d12+d2=1,
又根據(jù)垂徑定理和勾股定理,得到
|PQ|=2
4-d 2
,|MN|=2
4-d12

而S=
1
2
|PQ|•|MN|,
即S=
1
2
×2×
4-d 2
×2×
4-d12

=2
16-4(d2+d12)+d2d12
=2
12+d2d12

≤2
12+(
d2+d12
2
)2

=2
12+
1
4

=7.
當(dāng)且僅當(dāng)d1=d時(shí),等號(hào)成立,
所以S的最大值為7.
點(diǎn)評(píng):此題考查了直線與圓相交的性質(zhì),以及直線與圓的位置關(guān)系,涉及的知識(shí)有:點(diǎn)到直線的距離公式,一元二次方程根的判別式與解的關(guān)系,一元二次不等式的解法,解題的關(guān)鍵是:當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑;將直線與圓的方程聯(lián)立消去y后,得到關(guān)于x的一元二次方程,此一元二次方程的解的個(gè)數(shù)決定了直線與圓交點(diǎn)的個(gè)數(shù).與圓有關(guān)的比例線段,是中檔題.解題時(shí)要認(rèn)真審題,注意垂徑定理和勾股定理的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax-y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過(guò)點(diǎn)P(-2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為5的圓的圓心在x的正半軸上,且被直線x-y+5=0截得的弦長(zhǎng)為2
7

(1)求圓的方程;
(2)是否存在實(shí)數(shù)a,使得直線ax-y+5=0與圓相交于A、B兩點(diǎn),且過(guò)點(diǎn)P(-1,4)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省吉安一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax-y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過(guò)點(diǎn)P(-2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省張掖市山丹一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知半徑為2的圓的圓心C在x軸上,圓心C的橫坐標(biāo)是非負(fù)整數(shù),且與直線4x+3y+10=0相切.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與圓相交于P、Q兩點(diǎn),若=-2,求k的值;
(Ⅲ)已知直線l:y=kx+1,過(guò)點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PQMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案