(本題12分)
某民營(yíng)企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖一所示;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖二所示(利潤(rùn)與投資單位:萬元).

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元?

解:(1)設(shè)投資為x萬元,
A、B兩產(chǎn)品獲得的利潤(rùn)分別為f(x)、g(x)萬元,
由題意,f(x)=
又由圖知f(1.8)="0.45,  " g(4)="2.5;  " 解得
∴f(x)=        
(2)設(shè)對(duì)B產(chǎn)品投資x萬元,對(duì)A產(chǎn)品投資(10-x)萬元,記企業(yè)獲取的利潤(rùn)為y萬元,
則y=        
設(shè)

當(dāng)也即時(shí),y取最大值           
答:對(duì)B產(chǎn)品投資萬元,對(duì)A產(chǎn)品投資萬元時(shí),
可獲最大利潤(rùn)萬元

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)一種產(chǎn)品時(shí),固定成本為5000元,而每生產(chǎn)100臺(tái)產(chǎn)品時(shí)直接消耗成本要增加2500元,市場(chǎng)對(duì)此商品年需求量為500臺(tái),銷售的收入函數(shù)為R(x)=5x-x2(萬元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺(tái))
(1)把利潤(rùn)表示為年產(chǎn)量的函數(shù);
(2)年產(chǎn)量多少時(shí),企業(yè)所得的利潤(rùn)最大?
(3)年產(chǎn)量多少時(shí),企業(yè)才不虧本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知函數(shù)
(1)求證:在(0,+∞)上是增函數(shù);
(2)若在(0,+∞)上恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上為增函數(shù),且,為常數(shù),.
(1)求的值;
(2)若上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/2/1h4rr3.gif" style="vertical-align:middle;" />。
(1)求函數(shù)的值域;
(2)求函數(shù)的反函數(shù)。(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的對(duì)稱軸方程;
(2)當(dāng)時(shí),若函數(shù)有零點(diǎn),求m的范圍;
(3)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分,每小問5分)
已知函數(shù);
(1)作出函數(shù)f(x)的圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),由圖象寫出f(x)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)恒成立的a的最小值為k,存在n個(gè)
正數(shù),且,任取n個(gè)自變量的值

(I)求k的值;
(II)如果
(III)如果,且存在n個(gè)自變量的值,使,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知函數(shù)。(1)求不等式的解
集;(2)若不等式的解集為R,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案