某工廠有一批貨物由海上從甲地運(yùn)往乙地,已知輪船的最大航行速度為60海里/小時(shí),甲地至乙地之間的海上航行距離為600海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其他費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)與輪船速度的平方成正比,比例系數(shù)為0.5,其余費(fèi)用為每小時(shí)1250元。
(1)把全程運(yùn)輸成本(元)表示為速度(海里/小時(shí))的函數(shù);
(2)為使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?
(1);(2)輪船應(yīng)以50海里/小時(shí)的速度行駛.

試題分析:(1)由題意易列出速度與成本的函數(shù);(2)由列出的函數(shù)利用導(dǎo)數(shù)求最值.(也可用均值不等式)
試題解析:
解:(1)由題意得:
即:  6分
(2)由(1)知,
,解得x=50,或x=-50(舍去).  8分
當(dāng)時(shí),
當(dāng)時(shí),(均值不等式法同樣給分)  10分
因此,函數(shù)在x=50處取得極小值,也是最小值.
故為使全程運(yùn)輸成本最小,輪船應(yīng)以50海里/小時(shí)的速度行駛.  12分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),滿足,且,為自然對(duì)數(shù)的底數(shù).
(1)已知,求處的切線方程;
(2)若存在,使得成立,求的取值范圍;
(3)設(shè)函數(shù)為坐標(biāo)原點(diǎn),若對(duì)于時(shí)的圖象上的任一點(diǎn),在曲線上總存在一點(diǎn),使得,且的中點(diǎn)在軸上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某廠將原油精煉為汽油,需對(duì)原油進(jìn)行冷卻和加熱,如果第小時(shí),原油溫度(單位:℃)為,那么原油溫度的瞬時(shí)變化率的最小值為(   )
A.8
B.
C.-1
D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線與y軸交點(diǎn)處切線的傾斜角大小為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知向量,若,則處的切線方程為為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線在點(diǎn)處的切線與兩條坐標(biāo)軸圍成的三角形的面積
,則___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某一運(yùn)動(dòng)物體,在x(s)時(shí)離出發(fā)點(diǎn)的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時(shí)速度;
(3)經(jīng)過(guò)多少時(shí)間該物體的運(yùn)動(dòng)速度達(dá)到14m/s?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P的曲線y=x3x+上移動(dòng),在點(diǎn)P處的切線的傾斜角為α,則α的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在曲線處的切線方程為           。

查看答案和解析>>

同步練習(xí)冊(cè)答案