(2011•焦作一模)已知全集U={x∈N+|-2<x≤7},集合M={2,4,6},P={3,4,5},那么集合CU(M∪P)是( 。
分析:根據(jù)兩個集合的并集的定義求得M∪P,根據(jù)全集U,由補集的定義求得 CU(M∪P).
解答:解:M∪P={2,4,6}∪{3,4,5}={2,3,4,5,6},
又全集U={x∈N+|-2<x≤7}={1,2,3,4,5,6,7},
∴CU(M∪P)={1,7},
故選B.
點評:本題考查集合的表示方法、集合的補集,兩個集合的并集的定義和求法,求出M∪P是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)下列命題為真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)已知正三棱柱的側棱長與底面邊長都是2,以下給出a,b,c,d四種不同的三視圖,其中可以正確表示這個正三棱柱的三視圖的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)在△ABC中,∠ABC=90°,若BD⊥AC且BD交AC于點D,|
BD
|=
3
,則
BD
CB
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)點M是拋物線y=x2上的動點,點M到直線2x-y-a=0(a為常數(shù))的最短距離為
5
,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)某單位安排7位員工對一周的7個夜晚值班,每位員工值一個夜班且不重復值班,其中員工甲必須安排在星期一或星期二值班,員工乙不能安排在星期二值班,員工丙必須安排在星期五值班,則這個單位安排夜晚值班的方案共有( 。

查看答案和解析>>

同步練習冊答案