如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為

A.                                B.

C.2                                    D.

 

【答案】

A

【解析】

試題分析:∵| AB | : | BF2 | : | AF2 |=3:4 : 5,不妨令|AB|=3,| BF2 | =4,|AF2|=5,

∵|AB|2+ | BF2 | 2=|AF2|2,∴∠ABF2=90°,又由雙曲線的定義得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,

∴|AF1|+3-4=5-|AF1|,∴|AF1|=3.∴|BF1|-|BF2|=3+3-4=2a,∴a=1.

在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2,∴4c2=52,∴c=

∴雙曲線的離心率e=

考點(diǎn):本小題主要考查雙曲線的幾何性質(zhì).

點(diǎn)評(píng):本題考查轉(zhuǎn)化思想與運(yùn)算能力,其中求得a與c的值是關(guān)鍵,屬于中檔題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三2月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0) 的左、右焦點(diǎn),過F1的直線與的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,則雙 曲線的離心率為           .

 

查看答案和解析>>

同步練習(xí)冊答案