【題目】已知,為橢圓上的兩點,滿足,其中,分別為左右焦點.
(1)求的最小值;
(2)若,設直線的斜率為,求的值.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的離心率為,且焦點到漸近線的距離為.
(1)求雙曲線的標準方程;
(2)若以為斜率的直線與雙曲線相交于兩個不同的點,,且線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內切球的半徑,設四面體的內切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,棱的中點為,若光線從點出發(fā),依次經三個側面,,反射后,落到側面(不包括邊界),則入射光線與側面所成角的正切值的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:函數在定義域上單調遞增;命題:在區(qū)間上恒成立.
(1)如果命題為真命題,求實數的值或取值范圍;
(2)命題“”為真命題,“”為假命題,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”.三國時期,吳國的數學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內隨機地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數最有可能是( )
A.30B.40C.50D.60
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com