【題目】中,已知,,是邊上一點(diǎn),將沿折起,得到三棱錐。若該三棱錐的頂點(diǎn)在底面的射影在線(xiàn)段上,設(shè),則的取值范圍為______.

【答案】

【解析】

可得其為等腰直角三角形,有題意可知折疊前圖(1)中,根據(jù)等腰直角三角形位置關(guān)系可推出,在(2)圖中,的斜邊,,即可得出答案.

中,,,,

由余弦定理得,

,

所以為等腰直角三角形.

由將沿折起,得到三棱錐,

在底面的射影在線(xiàn)段上,

如圖2所示,平面,則,

過(guò),垂足為,連,

所以平面,所以,

在折疊前圖1中,由,,

所以三點(diǎn)共線(xiàn).中點(diǎn),

,為等腰直角三角形,

所以在線(xiàn)段之間,故為鈍角,

,所以之間,之間,

所以,.

在圖2中,由于的斜邊,

為直角邊,所以,即.

所以.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,

.

(1)證明: ;

(2)若直線(xiàn)與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,其準(zhǔn)線(xiàn)軸的交點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn).

(1)求拋物線(xiàn)的方程;

(2)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明:存在實(shí)數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,已知、

1)若點(diǎn)的坐標(biāo)為,直線(xiàn),直線(xiàn)邊于,交邊于,且的面積之比為,求直線(xiàn)的方程;

2)若是一個(gè)動(dòng)點(diǎn),且的面積為,試求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,動(dòng)圓與圓外切,且圓與直線(xiàn)相切,記動(dòng)圓圓心的軌跡為曲線(xiàn)

(1)求曲線(xiàn)的軌跡方程;

(2)設(shè)過(guò)定點(diǎn)的動(dòng)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),試問(wèn):在曲線(xiàn)上是否存在點(diǎn)(與兩點(diǎn)相異),當(dāng)直線(xiàn)的斜率存在時(shí),直線(xiàn)的斜率之和為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線(xiàn)過(guò)定點(diǎn).

1)若與圓相切,求的方程;

2)若與圓相交于,兩點(diǎn),求三角形面積的最大值,并求此時(shí)的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三邊分別為所對(duì)的角分別為,且三邊滿(mǎn)足,已知的外接圓的面積為,設(shè).則的取值范圍為______,函數(shù)的最大值的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一旅游景區(qū)供游客行走的路線(xiàn)圖,假設(shè)從進(jìn)口開(kāi)始到出口,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開(kāi)始選擇道路自行游玩,并按箭頭所指路線(xiàn)行走,最后到出口集中,設(shè)點(diǎn)是其中的一個(gè)交叉路口點(diǎn).

(1)求甲經(jīng)過(guò)點(diǎn)的概率;

(2)設(shè)這名游客中恰有名游客都是經(jīng)過(guò)點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程為常數(shù))有兩個(gè)不相等的根,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案