已知tanα,是關于x的方程x2-kx+k2-3=0的兩實根,且3π<α<π,
求cos(3π+α)-sin(π+α)的值.

0

解析試題分析:關于方程兩根的問題可用韋達定理解決,,從而求出k =±2,再根據(jù)角的范圍可知為正,從而求得。根據(jù)角的范圍可知,利用誘導公式求出sinα=cosα=-再利用誘導公式求cos(3π+α)和sin(π+α)的值。
試題解析:由已知得tanα=k2-3=1,∴k=±2.
又∵3π<α<π,∴tanα>0,>0.∴tanα+=k=2>0(k=-2舍去),
∴tanα==1,∵3π<α<π ∴
,

∴cos(3π+α)-sin(π+α)=sinα-cosα=0.
考點:韋達定理,誘導公式,特殊角的三角函數(shù)值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù).
(Ⅰ)在中,,求的值;
(Ⅱ)求函數(shù)的最小正周期及其圖象的所有對稱軸的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

行列式按第一列展開得,記函數(shù),且的最大值是.
(1)求
(2)將函數(shù)的圖像向左平移個單位,再將所得圖像上各點的橫坐標擴大為原來的倍,縱坐標不變,得到函數(shù)的圖像,求上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C滿足4sinAsinC-2cos(A-C)=1.
(Ⅰ)求角B的大;
(Ⅱ)求sinA+2sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)(A>0,>0)的最小值為-1,其圖象相鄰兩個對稱中心之間的距離為.
(1)求函數(shù)的解析式
(2)設,則,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若時,的最小值為– 2 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=(1+)sin2x+msin(x+)sin(x-).
(1)當m=0時,求f(x)在區(qū)間[]上的取值范圍;
(2)當tan α=2時,f(α)=,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△中,角、所對的邊分別為、,且.
(Ⅰ)若,求角
(Ⅱ)設,,試求的最大值.

查看答案和解析>>

同步練習冊答案