設(shè)球的半徑為時(shí)間t的函數(shù)R(t).若球的體積以均勻速度c增長,則球的表面積的增長速度與球半徑
A、成正比,比例系數(shù)為CB、成正比,比例系數(shù)為2CC、成反比,比例系數(shù)為CD、成反比,比例系數(shù)為2C
分析:求出球的體積的表達(dá)式,然后球的導(dǎo)數(shù),推出
c
R(t)R′(t)
=4πR(t)
,利用面積的導(dǎo)數(shù)是體積,求出球的表面積的增長速度與球半徑的比例關(guān)系.
解答:解:由題意可知球的體積為V(t)=
4
3
πR3(t)
,則c=V′(t)=4πR2(t)R′(t),由此可得
c
R(t)R′(t)
=4πR(t)
,
而球的表面積為S(t)=4πR2(t),
所以V=S′(t)=4πR2(t)=8πR(t)R′(t),
即 V=8πR(t)R′(t)=2×4πR(t)R(t)=
2c
R(t)R′(t)
R′(t) =
2c
R(t)

故選D
點(diǎn)評(píng):本題考球的表面積,考查邏輯思維能力,計(jì)算能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球的半徑為時(shí)間t的函數(shù)R(t).若球的表面積以均勻速度c增長,則球的體積的增長速度與球半徑(  )
A、成正比,比例系數(shù)為
c
2
B、成反比,比例系數(shù)為
c
2
C、成反比,比例系數(shù)為c
D、成正比,比例系數(shù)為c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球的半徑為時(shí)間t的函數(shù)r(t),若球的體積以均勻速度
12
增長,則球的表面積的增長速度與球半徑的乘積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球的半徑為時(shí)間t的函數(shù)。若球的體積以均勻速度c增長,則球的表面積的增長速度與球半徑(  )

A.成正比,比例系數(shù)為C             B. 成正比,比例系數(shù)為2C             

C.成反比,比例系數(shù)為C             D. 成反比,比例系數(shù)為2C   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)球的半徑為時(shí)間t的函數(shù)。若球的體積以均勻速度c增長,則球的表面積的增長速度與球半徑

A.成正比,比例系數(shù)為C             B. 成正比,比例系數(shù)為2C             

C.成反比,比例系數(shù)為C             D. 成反比,比例系數(shù)為2C 

查看答案和解析>>

同步練習(xí)冊(cè)答案