【題目】我省某校要進行一次月考,一般考生必須考5門學科,其中語、數(shù)、英、綜合這四科是必考科目,另外一門在物理、化學、政治、歷史、生物、地理、英語2中選擇.為節(jié)省時間,決定每天上午考兩門,下午考一門學科,三天半考完.

1)若語、數(shù)、英、綜合四門學科安排在上午第一場考試,則考試日程安排表有多少種不同的安排方法;

2)如果各科考試順序不受限制;求數(shù)學、化學在同一天考的概率是多少?

【答案】1;(2.

【解析】

1)分布計算出語、數(shù)、英、綜合四門學科安排在上午第一場和其余門學科的安排方法,根據(jù)分步乘法計數(shù)原理計算可得結果;

(2)分別計算出所有安排方法和數(shù)學、化學在同一天考的安排方法的種數(shù),根據(jù)古典概型概率公式計算可得結果.

1)語、數(shù)、英、綜合四門學科安排在上午第一場,共有種排法;

其余門學科共有種排法,

“考試日程安排表”共有種不同的安排方法.

(2)各科考試順序不受限制時,共有種安排方法;

數(shù)學和化學在同一天考共有:種安排方法,

數(shù)學、化學在同一天考的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

1)若用線性回歸模型擬合的關系,求關于的線性回歸方程;

2)用二次函數(shù)回歸模型擬合的關系,可得回歸方程:,

經計算二次函數(shù)回歸模型和線性回歸模型的分別約為,請用說明選擇哪個回歸模型更合適,并用此模型預測超市廣告費支出為3萬元時的銷售額.

參數(shù)數(shù)據(jù)及公式:,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得,.

1)求家庭的月儲蓄關于月收入的線性回歸方程,并判斷變量之間是正相關還是負相關;

2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.(注:線性回歸方程中,,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】化簡

1

2

【答案】(1) ;(2) .

【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1

(2)結合三角函數(shù)的性質可得三角函數(shù)式的值為

試題解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

點睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結構特征,分析結構特征,可以幫助我們找到變形的方向,如遇到分式要通分等.

型】解答
束】
18

【題目】平面內給定三個向量

1)求

2)求滿足的實數(shù).

3)若,求實數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調區(qū)間和極值;

2)若函數(shù)在區(qū)間上存在唯一零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設曲線經過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的單調區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C的方程是:),則下列說法正確的是(

A.時,雙曲線的離心率為

B.過雙曲線C右焦點F的直線與雙曲線只有一個交點的直線有且只有2條;

C.過雙曲線C右焦點F的直線與雙曲線右支交于M,N兩點,則此時線段長度有最小值;

D.雙曲線C與雙曲線:,)漸近線相同.

查看答案和解析>>

同步練習冊答案