已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x

(1)若函數(shù)h(x)=
f′(x)
x
為奇函數(shù),求a的值;
(2)若函數(shù)f(x)在x=1處取得極大值,求實數(shù)a的值;
(3)若a≥0,求f(x)在區(qū)間[0,1]上的最大值.
分析:(1)利用導(dǎo)數(shù)的運(yùn)算法則和函數(shù)的奇偶性即可得出;
(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值即可得出;
(3)對a分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出.
解答:解:(1)∵f′(x)=x2-(2a+1)x+(a2+a),
h(x)=
x2-(2a+1)x+(a2+a)
x

∵h(yuǎn)(x)為奇函數(shù),
∴f′(x)=x2-(2a+1)x+(a2+a)為偶函數(shù),即2a+1=0,
a=-
1
2

(2)∵f′(x)=x2-(2a+1)x+(a2+a)=(x-a)[x-(a+1)],
令f'(x)=0,得x1=a+1,x2=a,
∴f'(x),f(x)隨x的變化情況如下表:
x (-∞,a) a (a,a+1) a+1 (a+1,+∞)
f'(x) + 0 - 0 +
f(x)f 極大值 極小值
∴a=1.
(3)∵a>-1,∴a+1>0,
當(dāng)a≥1時,f'(x)≥0對x∈[0,1]成立,
∴當(dāng)x=1時,f(x)取得最大值f(1)=a2-
1
6
;
當(dāng)0<a<1時,在x∈(0,a),f'(x)>0,f(x)單調(diào)遞增,在x∈(a,1)時,f'(x)<0,f(x)單調(diào)遞減,
∴當(dāng)x=a時,f(x)取得最大值f(a)=
1
3
a3+
1
2
a2

當(dāng)a=0時,在x∈(0,1),f'(x)<0,f(x)單調(diào)遞減,
∴當(dāng)x=0時,f(x)取得最大值f(0)=0;
綜上所述,當(dāng)a≥1時,f(x)在x=1取得最大值f(1)=a2-
1
6

當(dāng)0≤a<1時,f(x)取得最大值f(a)=
1
3
a3+
1
2
a2
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值、分類討論、函數(shù)的奇偶性等基礎(chǔ)知識與基本技能方法,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案