【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是(
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)

【答案】C
【解析】解:由函數(shù)圖象可知:當f(x)<0時,0<x<1;當f(x)>0時,1<x<3;

而cosx中的x∈(0,3),當cosx>0時,x∈(0, );當cosx<0時,x∈( ,3),

則f(x)cosx<0,可化為: ,

解得: <x<3或0<x<1,

所以所求不等式的解集為:(0,1)∪( ,3),

故選C.

【考點精析】本題主要考查了函數(shù)的圖象和余弦函數(shù)的單調性的相關知識點,需要掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值;余弦函數(shù)的單調性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x0∈R,m +2≤0,q:x∈R,x2-2mx+1>0,若p∨q為假命題,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《孫子算經(jīng)》中有如下問題:“今有三女,長女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會?” 意思是:“一家出嫁的三個女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個女兒從娘家同一天走后,至少再隔多少天三人再次相會?”假如回娘家當天均回夫家,若當?shù)仫L俗正月初二都要回娘家,則從正月初三算起的一百天內,有女兒回娘家的天數(shù)有( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若x,y滿足約束條件 則z=y(tǒng)-x的取值范圍為( )
A.[-2,2]
B.
C.[-1,2]
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線y2=4x的焦點為F,過點F作直線l與拋物線分別交于兩點A,B,若點M滿足 = + ),過M作y軸的垂線與拋物線交于點P,若|PF|=2,則M點的橫坐標為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系 中,圓 的參數(shù)方程為 為參數(shù), 是大于0的常數(shù)).以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓 的極坐標方程為
(1)求圓 的極坐標方程和圓 的直角坐標方程;
(2)分別記直線 與圓 、圓 的異于原點的焦點為 ,若圓 與圓 外切,試求實數(shù) 的值及線段 的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為半圓 的直徑,點 是半圓弧上的兩點, , .曲線 經(jīng)過點 ,且曲線 上任意點 滿足: 為定值.

(Ⅰ)求曲線 的方程;
(Ⅱ)設過點 的直線 與曲線 交于不同的兩點 ,求 面積最大時的直線 的方程.

查看答案和解析>>

同步練習冊答案