【題目】如圖①,在等腰梯形中,,,分別為,的中點,,為中點現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,
(1)證明:;
(2)求二面角的余弦值。
【答案】(1)見證明;(2)
【解析】
(1)由已知可得EF⊥AB,EF⊥CD,折疊后,EF⊥DF,EF⊥CF,利用線面垂直的判定得EF⊥平面DCF,從而得到EF⊥MC;(2)由平面平面,得平面,得,進一步得,,兩兩垂直.以為坐標原點,分別以,,所在直線為軸,軸,軸建立空間直角坐標系,求平面,平面的法向量,求解即可
(1)由題意,可知在等腰梯形中,,
∵,分別為,的中點,∴,.
∴折疊后,,.
∵,∴平面.
又平面,∴.
(2)∵平面平面,平面平面,且,
∴平面,∴,∴,,兩兩垂直.
以為坐標原點,分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系.
∵,∴.
∴,,,.
∴,,.
設平面,平面的法向量分別為
,.
由,得.
取,則.
由,得.
取,則.
∵,
∴二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,為的中點,.
(1)求證:平面;
(2)點在線段上,,試確定的值,使平面;
(3)若平面,平面平面,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里裝有個均勻的紅球和個均勻的白球,每個球被取到的概率相等,已知從盒子里一次隨機取出1個球,取到的球是紅球的概率為,從盒子里一次隨機取出2個球,取到的球至少有1個是白球的概率為.
(1)求,的值;
(2)若一次從盒子里隨機取出3個球,求取到的白球個數(shù)不小于紅球個數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:對任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=log2an,求(n∈N*)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市一所醫(yī)院在某時間段為發(fā)燒超過38的病人特設發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
晝夜溫差() | 8 | 10 | 13 | 12 | 7 |
就診人數(shù)(人) | 18 | 25 | 28 | 27 | 17 |
(1)求的相關(guān)系數(shù),并說明晝夜溫差()與就診人數(shù)具有很強的線性相關(guān)關(guān)系.
(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預測晝夜溫差為9時的就診人數(shù).
附:樣本的相關(guān)系數(shù)為,當時認為兩個變量有很強的線性相關(guān)關(guān)系.
回歸直線方程為,其中,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。
(1)求曲線的方程;
(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,AC⊥BC,且,AC=BC=2,D,E分別為AB,PB中點,PD⊥平面ABC,PD=3.
(1)求直線CE與直線PA夾角的余弦值;
(2)求直線PC與平面DEC夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:其中正確命題數(shù)是( )
A.在線性回歸模型中,相關(guān)系數(shù)表示解釋變量對于預報變量變化的貢獻率,越接近于1,表示回歸效果越好
B.兩個變量相關(guān)性越強,則相關(guān)系數(shù)的絕對值就越接近于1
C.在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位
D.對分類變量與,它們的隨機變量的觀測值來說,觀測值越小,“與有關(guān)系”的把握程度越大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com