設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(1)試判斷函數(shù)f1(x)=x2,中哪些是各自定義域上的C函數(shù),并說明理由;
(2)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(3)若f(x)是定義域為R的函數(shù),且最小正周期為T,試證明f(x)不是R上的C函數(shù).
解:(1)是C函數(shù),證明如下: 對任意實數(shù)及, 有. 即. ∴是C函數(shù).不是C函數(shù),證明如下: 取,,, 則. 即.∴不是C函數(shù). 4分 (2)對任意,取,,.是R上的C函數(shù),,且 ∴. 那么. 可證是C函數(shù),且使得都成立,此時. 綜上所述,的最大值為. 9分 (3)假設(shè)是R上的C函數(shù). 若存在且,使得. 若, 記,,,則,且. 那么 這與矛盾. 若,記,,也可得到矛盾. ∴在上是常數(shù)函數(shù), 又因為是周期為T的函數(shù),所以在R上是常數(shù)函數(shù),這與的最小正周期為T矛盾. 所以不是R上的C函數(shù). 14分 |
科目:高中數(shù)學(xué) 來源:北京市海淀區(qū)2008-2009學(xué)年度高三年級第一學(xué)期期中練習(xí)數(shù)學(xué)文科 題型:044
設(shè)f(x)是定義在D上的函數(shù),若對D中的任意兩數(shù)x1,x2(x1≠x2),恒有,則稱f(x)為定義在D上的C函數(shù).
(1)試判斷函數(shù)f(x)=x2是否為定義域上的C函數(shù),并說明理由;
(2)若函數(shù)f(x)是R上的奇函數(shù),試證明f(x)不是R上的C函數(shù);
(3)設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)a∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(ax1+(1-a)x2]≤af(x1)+(1-a)f(x2),則稱f(x)為定義在D上的C函數(shù).已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n,0,1,2,…,m,且a0=0,am=2m,記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.①②③ B.①③ C.③④ D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.5個 B.1個 C.9個 D.7個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三上學(xué)期期末考試文科數(shù)學(xué) 題型:選擇題
設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時,有恒成立,則不等式 的解集是
A.(-2,0) ∪(2,+∞) B.(-2,0) ∪(0,2) C.(-∞,-2)∪(2,+∞) D.(-∞,-2)∪(0,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com