【題目】如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.
【答案】
(1)解:以OA,OC,OD為x,y,z的正方向建立直角坐標系,
則有:
由于 ,
故AD⊥BE.
(2)解:如圖建立坐標系,
則 ,
,
設平面AEC的法向量為 ,
則 所以 ,
令y1=1,則
所以 ,
設平面BDE的法向量為
則 所以 ,令x2=1,則y2=0,z1=﹣1
所以 ,
所以 .
【解析】(1)建立空間坐標系,求出點的坐標,利用向量法證明直線垂直.(2)求出平面的法向量,利用向量法進行求解即可.
【考點精析】根據題目的已知條件,利用空間中直線與直線之間的位置關系的相關知識可以得到問題的答案,需要掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.
科目:高中數學 來源: 題型:
【題目】設數列{an}是各項均為正數的等比數列,且a1=3,a2+a3=36.
(1)求數列{an}的通項公式;
(2)若數列{bn}對任意的正整數n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數.
(1)證明:數列{an}是等比數列;
(2)當p=3時,若數列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數列{bn}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四面體ABCD中,AB,BC,BD兩兩垂直,BC=BD=2,點E是CD的中點,異面直線AD與BE所成角的余弦值為,則直線BE與平面ACD所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小型工廠安排甲、乙兩種產品的生產,已知工廠生產甲、乙兩種產品每噸所需要的原材料A,B,C的數量和一周內可用資源數量如下表所示:
原材料 | 甲(噸) | 乙(噸) | 資源數量(噸) |
A | 1 | 1 | 50 |
B | 4 | 0 | 160 |
C | 2 | 5 | 200 |
如果甲產品每噸的利潤為300元,乙產品每噸的利潤為200元,那么適當安排生產后,工廠每周可獲得的最大利潤為______元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),曲線C的極坐標方程是ρcos2θ=sinθ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(1)寫出直線l的極坐標方程與曲線C普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),在以坐標原點O為極點,x軸的正非負半軸為極軸,取相同單位長度的極坐標系中,圓的極坐標方程為ρ=4sinθ.
(1)求直線l被圓截得的弦長;
(2)從極點作圓C的弦,求各弦中點的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com