證明函數(shù)是奇函數(shù)。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)滿足對一切都有,且,
時有.
(1)求的值;
(2)判斷并證明函數(shù)上的單調(diào)性;
(3)解不等式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般 情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當
橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20
輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度 x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v (x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)的最大值為.
(1)設(shè),求的取值范圍;
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)。
⑴求函數(shù)的定義域
⑵求函數(shù)的值域。
⑶求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域為R,滿足:①;
②對任意實數(shù),有.
(Ⅰ)求,的值;
(Ⅱ)判斷函數(shù)的奇偶性與周期性,并求的值;
(Ⅲ)是否存在常數(shù),使得不等式對一切實數(shù)成立.如果存在,求出常數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知函數(shù)f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .
(Ⅰ) 試討論函數(shù)f (x )的單調(diào)性;
(Ⅱ) 若a>0,求函數(shù)f (x ) 在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習冊答案