22.(本小題滿分10分)
已知動圓
過點
且與直線
相切.
(Ⅰ)求點
的軌跡
的方程;
(Ⅱ)過點
作一條直線交軌跡
于
兩點,軌跡
在
兩點處的切線相交于點
,
為線段
的中點,求證:
軸.
(Ⅰ)根據(jù)拋物線的定義,可得動圓圓心
的軌跡C的方程為
……………………4分
(Ⅱ)證明:設(shè)
, ∵
, ∴
,∴
的斜率分別
為
,故
的方程為
,
的方程為
…7分
即
,兩式相減,得
,
∴
的橫坐標相等,于是
軸……………………………………………………10分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知雙曲線
的右焦點為
,過點
的動直線與雙曲線相交于
兩點,點
的坐標是
.
(I)證明
,
為常數(shù);
(II)若動點
滿足
(其中
為坐標原點),求點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面內(nèi),設(shè)到定點F(0,2)和
軸距離之和為4的點P軌跡為曲線C,直線
過點F,交曲線C于M,N兩點。
(1)說明曲線C的形狀,并畫出圖形;
(2)求線段MN長度的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題15分)如圖,S(1,1)是拋物線為
上的一點,弦SC,SD分別交
軸于A,B兩點,且SA=SB。
(I)求證:直線CD的斜率為定值;
(Ⅱ)延長DC交
軸于點E,若
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題 12分).過點A(-4,0)向橢圓
引兩條切線,切點分別為B,C,且
為正三角形.
(Ⅰ)求
最大時橢圓的方程;
(Ⅱ)對(Ⅰ)中的橢圓,若其左焦點為
,過
的直線
與
軸交于點
,與橢圓的一個交點為
,且
求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(13分)已知橢圓
C的中心在坐標原點,離心率
,且其中一個焦點與拋物線
的焦點重合.
(1)求橢圓
C的方程;
(2)過點
S(
,0)的動直線
l交橢圓
C于
A、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論
l如何轉(zhuǎn)動,以
AB為直徑的圓恒過點T,若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),
(1)求t的值;
(2)若點P、Q是拋物線C上兩動點,且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓的焦點在
軸,長軸長
為10,離心率為
,則該橢圓的標準方程為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
曲線
的長度是
.
查看答案和解析>>