已知x,y∈Z,n∈N*,設f(n)是不等式組
x≥1
0≤y≤-x+n
表示的平面區(qū)域內(nèi)可行解的個數(shù),則f(2)=______.
當n=2時,不等式組對應為
x≥1
y≥0
y≤-x+2
,
當x=1時,不等式組等價為
x=1
y≥0
y≤1
,此時0≤y≤1,即y=0或y=1,此時對應整數(shù)點為(1,0),(1,1).
當x=2時,不等式組等價為
x=2
y≥0
y≤0
,此時y=0,此時對應整數(shù)點為(2,0).
當x≥3時,不等式組等價為
x=3
y≥0
y≤-1
,此時不等式無解.
故f(2)=3,
故答案為:3
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,試證:;并求函數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知
x+y-5≤0
y≥x
x≥1
,則z=2x+3y的最大值為(  )
A.5B.10C.
25
2
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某營養(yǎng)師要求為某個兒童預訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營狀中至少含64個單位的碳水化合物和42個單位的蛋白質(zhì)和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應當為該兒童分別預訂多少個單位的午餐和晚餐?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,目標函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則實數(shù)a的取值范圍是(  )
A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設命題p:
3x+4y-12>0
2x-y-8≤0
x-2y+6≥0
(x,y∈R),命題q:x2+y2≤r2(x、y、r∈R,r>0),若命題q是命題?p的充分非必要條件,則r的最大值為 ______

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系xOy中,M為不等式組
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的區(qū)域上一動點,則直線OM斜率的最小值為(  )
A.2B.1C.-
1
3
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

實數(shù)x,y滿足
x≥1
y≤a(a>1)
x-y≤0
若目標函數(shù)z=x+y取得最大值4,則實數(shù)a的值為( 。
A.4B.3C.2D.
3
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知實數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,則z=2x+y的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

同步練習冊答案