如圖所示,正六棱柱ABCD-EFA1B1C1D1E1F1的底面邊長為1,側(cè)棱長為,則這個棱柱的側(cè)面對角線E1DBC1所成的角是(  )
A.90°B.60°C.45°D.30°
B
如圖,連結(jié)FE1,可知FE1BC1,再連結(jié)DF,得△DE1F.
由已知得DF=,E1F=DE1=,
∴△DE1F為正三角形.
E1DBC1所成的角是60°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

把正方形ABCD沿對角線AC折起成直二面角,點E、F分別是AD、BC的中點,點O是原正方形的中心,求:

(1)EF的長;
(2)折起后∠EOF的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是直角梯形,角DABS是直角,,,求面和面所成角的正切值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二面角,,,四邊形為矩形,,,且,,依次是的中點.
(1)  求二面角的大;
(2)  求證:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正方形ABCD沿著對角線AC折成直二面角,則異面直線AB和CD所成的角為(   )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知斜三棱柱ABCA1B1C1中,A1C1=B1C1=2,D、D1分別是ABA1B1的中點,平面A1ABB1⊥平面A1B1C1,異面直線AB1C1B互相垂直.
(1)求證: AB1C1D1;
(2)求證: AB1⊥面A1CD;
(3)若AB1=3,求直線AC與平面A1CD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

 已知:如圖12,P是正方形ABCD所在平面外一點,PA=PB=PC=PD=a,AB=a.
求:平面APB與平面CPD相交所成較大的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點,若PA=AB,則異面直線PE與AB所成角的余弦值( 。
A.
3
7
14
B.
21
6
C.
5
10
D.
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正方形ABCD沿對角線AC折成一個直二面角,則異面直線AB和CD所成的角是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案