【題目】設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若正項(xiàng)等比數(shù)列滿足,,且,數(shù)列的前項(xiàng)和為,若對任意,均有恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)an=2n;(Ⅱ)[,+∞).
【解析】
(Ⅰ)對遞推關(guān)系再遞推一步,兩式相減,最后結(jié)合等差數(shù)列的定義進(jìn)行求解即可;
(Ⅱ)根據(jù)等差數(shù)列的通項(xiàng)公式結(jié)合已知求出等比數(shù)列的通項(xiàng)公式,最后利用錯(cuò)位相減法、判斷數(shù)列的單調(diào)性進(jìn)行求解即可.
(Ⅰ)因?yàn)?/span>,所以(n≥2),
兩式相減得:an+12﹣an2=4an+4,即an+12=(an+2)2(n≥2),
又因?yàn)閿?shù)列{an}的各項(xiàng)均為正數(shù),所以an+1=an+2(n≥2),
又因?yàn)?/span>a2=4,16=a12+4+4,可得a1=2,
所以當(dāng)n=1時(shí)上式成立,即數(shù)列{an}是首項(xiàng)為2、公差為2的等差數(shù)列,
所以;
(Ⅱ)由(1)可知b1=a1=2,b3=a4=8,所以正項(xiàng)等比數(shù)列的公比為:,
因此bn=;cn=.
①
②
① —②得:
恒成立,等價(jià)于恒成立,
所以恒成立,
設(shè)kn=,則kn+1﹣kn=﹣=,
所以當(dāng)n≤4時(shí)kn+1>kn,當(dāng)n>4時(shí)kn+1<kn,
所以
所以當(dāng)kn的最大值為k5=,故m≥,
即實(shí)數(shù)m的取值范圍是:[,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),是的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.
(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.
(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只小蜜蜂位于數(shù)軸上的原點(diǎn)處,小蜜蜂每一次具有只向左或只向右飛行一個(gè)單位或者兩個(gè)單位距離的能力,且每次飛行至少一個(gè)單位.若小蜜蜂經(jīng)過5次飛行后,停在數(shù)軸上實(shí)數(shù)3位于的點(diǎn)處,則小蜜蜂不同的飛行方式有多少種?( )
A. 5 B. 25 C. 55 D. 75
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面
在棱上運(yùn)動.
(1)當(dāng)在何處時(shí), 平面;
(2)已知為的中點(diǎn), 與交于點(diǎn),當(dāng)平面時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : ( )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長為 .
(1)求橢圓 的方程;
(2)過點(diǎn) 的直線 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)求在上的單調(diào)性及極值;
(2)若,對任意的,不等式都在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若射線分別交于兩點(diǎn), 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com