函數(shù)f(x)=
x2+a
x+1
(a∈R)

(1)若f(x)在點(1,f(1))處的切線斜率為
1
2
,求實數(shù)a的值;
(2)若f(x)在x=1取得極值,求函數(shù)f(x)的單調(diào)區(qū)間.
(1)f′(x)=
2x(x+1)-x2-a
(x+1)2
=
x2+2x-a
(x+1)2
,
若f(x)在點(1,f(1))處的切線斜率為
1
2
,則f′(1)=
1
2

所以,f“(1)=
3-a
4
=
1
2
,得a=1.
(2)因為f(x)在x=1處取得極值,
所以f'(1)=0,即1+2-a=0,a=3,
f′(x)=
x2+2x-3
(x+1)2

因為f(x)的定義域為{x|x≠-1},所以有:

所以,f(x)的單調(diào)遞增區(qū)間是(-∞,-3),(1+∞),單調(diào)遞減區(qū)間是(-3,-1),(-1,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三次函數(shù)f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b為實常數(shù).
(1)若a=3,b=3時,求函數(shù)f(x)的極大、極小值;
(2)設(shè)函數(shù)g(x)=f′(x)+7,其中f′(x)是f(x)的導(dǎo)函數(shù),若g(x)的導(dǎo)函數(shù)為g′(x),g′(0)>0,g(x)與x軸有且僅有一個公共點,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(3)求證:當x∈(0,e]時,e2x-
5
2
>lnx+
lnx
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)n階方陣,任取An中的一個元素,記為x1;劃去x1所在的行和列,將剩下的元素按原來的位置關(guān)系組成n-1階方陣An-1,任取An-1中的一個元素,記為x2;劃去x2所在的行和列,…;將最后剩下的一個元素記為xn,記Sn=x1+x2+…+xn,則
lim
n→∞
Sn
n3+1
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x)是R上的可導(dǎo)函數(shù),當x≠0時,有f′(x)+
f(x)
x
>0
,則函數(shù)F(x)=xf(x)+
1
x
的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-2lnx+a(a為實常數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
2
,2]
上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,則實數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為改善行人過馬路難的問題,市政府決定在如圖所示的矩形區(qū)域ABCD(AB=60米,AD=104米)內(nèi)修建一座過街天橋,天橋的高GM與HN均為4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,F(xiàn)C的造價均為每米1萬元,GH的造價為每米2萬元,設(shè)MN與AB所成的角為α(α∈[0,
π
4
]),天橋的總造價(由AE,EG,GH,HF,F(xiàn)C五段構(gòu)成,GM與HN忽略不計)為W萬元.
(1)試用α表示GH的長;
(2)求W關(guān)于α的函數(shù)關(guān)系式;
(3)求W的最小值及相應(yīng)的角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)當a=2時,求函數(shù)f(x)=
x2
2
-2ax+3lnx的單調(diào)區(qū)間.
(2)當x∈[1,+∞)時,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案