已知四邊形ABCD是邊長為2的正方形,M為BC的中點(diǎn),點(diǎn)N是四邊形AMCD四邊上及其內(nèi)部的任意一點(diǎn),則數(shù)學(xué)公式的最大值為________.

8
分析:建立平面直角坐標(biāo)系,設(shè)N(x,y),則=2x+y,其幾何意義是直線y=-2x+t的縱截距,由圖象即可得到結(jié)論.
解答:建立如圖所示的平面直角坐標(biāo)系,

設(shè)N(x,y),則=2x+y
其幾何意義是直線y=-2x+t的縱截距
由圖象可知,2x+y在點(diǎn)C(2,2)處取得最大值為8
故答案為:8
點(diǎn)評:本題考查向量知識的運(yùn)用,考查線性規(guī)劃知識,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市計劃在如圖所示的空地ABCD上豎一塊長方形液晶廣告屏幕MNEF,宣傳該城市未來十年計劃、目標(biāo)等相關(guān)政策.已知四邊形ABCD是邊長為30m的正方形,電源在點(diǎn)P處,點(diǎn)P到邊AD、AB的距離分別為9m,3m,且MN~NE=16~9,線段MN必過點(diǎn)P,端點(diǎn)M、N分別在邊AD、AB上,設(shè)AN=xm,液晶廣告屏幕MNEF的面積為Sm2
(1)求S關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)若液晶屏每平米造價為1500元,當(dāng)x為何值時,液晶廣告屏幕MNEF的造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知四邊形ABCD是邊長為4的正方形,E、F分別是AB,AD的中點(diǎn),GC垂直于ABCD所在平面,且GC=2.
(1)求異面直線BC與GE所成的角的余弦值;
(2)求平面CBG與平面BGD的夾角的余弦值;
(3)求三棱錐D-GEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知四邊形ABCD是空間四邊形,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),求證:四邊形EFGH是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案