【題目】已知數(shù)列是以2為首項(xiàng)的等差數(shù)列,且成等比數(shù)列.

(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;

,求數(shù)列的前項(xiàng)之和.

【答案】(1) ,;(2) .

【解析】試題分析:()根據(jù)數(shù)列首項(xiàng)為 ,可由成等比數(shù)列列方程求出數(shù)列的公差,從而可求得數(shù)列的通項(xiàng)公式及前項(xiàng)和;(由(Ⅰ)得, ,利用錯(cuò)位相減法可得數(shù)列的前項(xiàng)之和.

試題解析:() 設(shè)數(shù)列的公差為,由條件可得,即

解得(舍去),

則數(shù)列的通項(xiàng)公式為,

.

(Ⅱ)由(Ⅰ)得,

,

,

將①-②得

,

.

【易錯(cuò)點(diǎn)晴】本題主要考等差數(shù)列的通項(xiàng)公式、等比數(shù)列的求和公式、以及錯(cuò)位相減法求數(shù)列的和,屬于中檔題. “錯(cuò)位相減法求數(shù)列的和是重點(diǎn)也是難點(diǎn),利用錯(cuò)位相減法求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用錯(cuò)位相減法求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐 中,底面 是邊長(zhǎng)為 2 的正三角形,頂點(diǎn) 在底面上的射影為的中心,若的中點(diǎn),且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在封閉的直三棱柱ABC﹣A1B1C1內(nèi)有一個(gè)體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是(
A.4π
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴(kuò)建成一個(gè)更大的三角形花園AMN,要求點(diǎn)M在射線AP上,點(diǎn)N在射線AQ上,且直線MN過點(diǎn)C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問:DN取何值時(shí),S取得最小值,并求出最小值;
(Ⅱ)若S不超過1764平方米,求DN長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù).

(Ⅰ)求的最小值;

(Ⅱ)若不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程(x﹣1)2+y2=1,P是橢圓 =1上一點(diǎn),過P作圓的兩條切線,切點(diǎn)為A,B,則 的取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若曲線處的切線互相平行,求的值;

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案