(本小題滿分13分)已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且.(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知點(diǎn)A(m,2)在曲線C上,過點(diǎn)A作曲線C的兩條弦AD,AE,且AD,AE的斜率k1、k2滿足,試推斷:動(dòng)直線DE是否過定點(diǎn)?證明你的結(jié)論。

 

【答案】

(1)動(dòng)點(diǎn)的軌跡的方程 (2)直線DE過定點(diǎn)(-1,-2)

【解析】(1)設(shè),則,∵

,

所以動(dòng)點(diǎn)的軌跡的方程.                         ………5分

(2)將A(m,2)代入m=1, ∴A(1,2)      …………………………6分

 法一: ∵兩點(diǎn)不可能關(guān)于x軸對(duì)稱,∴DE不斜率必存在

設(shè)直線DE的方程為

………………………8分

  …………………9分

代入化簡(jiǎn)得

…………………………………10分

b=k-2代入y=kx+by=kx+k-2=k(x+1)-2,過定點(diǎn)(-1,- 2)…………11分

b=2-k代入y=kx+b

y=kx+2-k=k(x-1)+2,過定點(diǎn)(1,2)即為A點(diǎn),舍去

∴直線DE過定點(diǎn)(-1,-2)  …………………………………………13分

 法二:設(shè),(5分)則      ……7分

同理,由已知得

   …………9分

設(shè)直線DE的方程為x=ty+n代入

      …………10分

,直線DE的方程為   …12分

直線DE過定點(diǎn)(-1,-2)        ………13分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案