在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù)描述。如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá)。在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開始工作,那么,原本平靜的水面將呈現(xiàn)怎樣的狀態(tài),請(qǐng)說明理由
同解析

 
即三個(gè)振動(dòng)源產(chǎn)生的振動(dòng)被相互抵消,所以,原本平靜的水面仍保持平靜。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)有下列性質(zhì):“若
,使得”成立。
(1)利用這個(gè)性質(zhì)證明唯一;
(2)設(shè)A、B、C是函數(shù)圖象上三個(gè)不同的點(diǎn),試判斷△ABC的形狀,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=3sin(x-θ)的圖象F按向量(,3)平移得到圖象F′,若F′的一條對(duì)稱軸是直線x=,則θ的一個(gè)可能取值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),
(1)求當(dāng)時(shí)的解析式;
(2)試確定函數(shù)的單調(diào)區(qū)間,并證明你的結(jié)論;
(3)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)的零點(diǎn)有且只有一個(gè),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)討論的奇偶性;
(3)討論上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知函數(shù)
(1)求函數(shù)的反函數(shù);
(2)若時(shí),不等式恒成立,試求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

備選題:已知函數(shù)是定義在上的減函數(shù),并且滿足,
①求的值;
②解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

佛山某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該陶瓷廠的日銷售利潤(rùn)與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案