【題目】已知a>0,b>0,m>0,n>0,求證:am+n+bm+n≥ambn+anbm.
【答案】【解答】
證明:am+n+bm+n-(ambn+anbm)
=(am+n-ambn)-(anbm-bm+n)=am(an-bn)-bm(an-bn)=(am-bm)(an-bn).
當a>b時,am>bm , an>bn , ∴(am-bm)(an-bn)>0;
當a<b時,am<bm , an<bn , ∴(am-bm)(an-bn)>0;
當a=b時,am=bm , an=bn , ∴(am-bm)(an-bn)=0.
綜上,(am-bm)(an-bn)≥0,即am+n+bm+n≥ambn+anbm.
【解析】本題主要考查了分析法的思考過程、特點及應用,解決問題的關鍵是利用作差比較,因式分解的方法,分類討論思想,對a,b的大小關系討論,可證不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設證 n=k+1時的情況,只需展開( )
A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,lα,lβ,則( )
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α與β相交,且交線垂直于l
D.α與β相交,且交線平行于l
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ln(2+x)+ln(2﹣x),則f(x)是( )
A.奇函數(shù),且在(0,2)上是增函數(shù)
B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)
D.偶函數(shù),且在(0,2)上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明1+2+3+…+(2n+1)=(n+1)(2n+1)時,從n=k到n=k+1,左邊需增添的代數(shù)式是( )
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com