(2013•貴陽(yáng)二模)已知F是拋物線C:y2=4x的焦點(diǎn),直線l:y=k(x+1)與拋物線C交于A,B兩點(diǎn),記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=
0
0
分析:由拋物線方程求出拋物線的焦點(diǎn)坐標(biāo),把直線方程和拋物線方程聯(lián)立后化為關(guān)于x的一元二次方程,由根與系數(shù)關(guān)系求出兩個(gè)交點(diǎn)的橫坐標(biāo)的和與積,寫出斜率后作和,通分整理,把兩個(gè)交點(diǎn)橫坐標(biāo)的乘積代入即可得到答案.
解答:解:由y2=4x,得拋物線焦點(diǎn)F(1,0),
聯(lián)立
y=k(x+1)
y2=4x
,得k2x2+(2k-4)x+k2=0.
設(shè)A(x1,y1),B(x2,y2),
x1+x2=
4-2k
k2
,x1x2=1

k1+k2=
y1
x1-1
+
y2
x2-1
=
k(x1+1)(x2-1)+k(x2+1)(x1-1)
(x1-1)(x2-1)
=
2k(x1x2-1)
(x1-1)(x2-1)
=
2k(1-1)
(x1-1)(x2-1)
=0

故答案為0.
點(diǎn)評(píng):本題考查了直線的斜率,考查了直線與圓錐曲線的關(guān)系,訓(xùn)練了一元二次方程的根與系數(shù)關(guān)系,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)已知函數(shù)f(x)=(bx+c)lnx在x=
1
e
處取得極值,且在x=1處的切線的斜率為1.
(Ⅰ)求b,c的值及f(x)的單調(diào)減區(qū)間;
(Ⅱ)設(shè)p>0,q>0,g(x)=f(x)+x2,求證:5g(
3p+2q
5
)≤3g(p)+2g(q).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a2+a4=14,S7=70.
(Ⅰ)求數(shù)列an的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
2Sn+48n
,數(shù)列bn的最小項(xiàng)是第幾項(xiàng),并求出該項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)已知集合A={x∈R|x2≤4},B={x∈N|
x
≤3},則A∩B( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)已知i是虛數(shù)單位,m和n都是實(shí)數(shù),且m(1+i)=5+ni,則
m+ni
m-ni
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)若x∈﹙10-1,1﹚,a=lgx,b=2lgx.c=lg3x.則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案