【題目】如圖,在四棱錐中,底面為菱形,平面平面,,.
(1)求證:;
(2)當(dāng)直線與平面所成角為時,求二面角平面角的大小.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接、、,推導(dǎo)出,,可證得直線平面,進而可證得;
(2)證明出平面,然后以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用直線與平面所成的角為求出,然后利用空間向量法可求得二面角的平面角的大小.
(1)取的中點,連接、、,
,為的中點,.
四邊形是菱形,且,是正三角形,則.
又,平面.
又平面,;
(2),平面平面,交線為,平面.
又平面,,、、兩兩互相垂直.
以為原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,
面,即為與面所成角,,.
在正三角形中,,假設(shè),則.
、、、.
,,.
設(shè)面的法向量為,則.
不妨取,則.
同理,設(shè)面的法向量為,則.
不妨取,則.
,平面平面,二面角平面角為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為生產(chǎn)一種精密管件研發(fā)了一臺生產(chǎn)該精密管件的車床,該精密管件有內(nèi)外兩個口徑,監(jiān)管部門規(guī)定“口徑誤差”的計算方式為:管件內(nèi)外兩個口徑實際長分別為,標(biāo)準(zhǔn)長分別為則“口徑誤差”為只要“口徑誤差”不超過就認為合格,已知這臺車床分晝夜兩個獨立批次生產(chǎn).工廠質(zhì)檢部在兩個批次生產(chǎn)的產(chǎn)品中分別隨機抽取40件作為樣本,經(jīng)檢測其中晝批次的40個樣本中有4個不合格品,夜批次的40個樣本中有10個不合格品.
(Ⅰ)以上述樣本的頻率作為概率,在晝夜兩個批次中分別抽取2件產(chǎn)品,求其中恰有1件不合格產(chǎn)品的概率;
(Ⅱ)若每批次各生產(chǎn)1000件,已知每件產(chǎn)品的成本為5元,每件合格品的利潤為10元;若對產(chǎn)品檢驗,則每件產(chǎn)品的檢驗費用為2.5元;若有不合格品進入用戶手中,則工廠要對用戶賠償,這時生產(chǎn)的每件不合格品工廠要損失25元.以上述樣本的頻率作為概率,以總利潤的期望值為決策依據(jù),分析是否要對每個批次的所有產(chǎn)品作檢測?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個同樣的紅球、兩個同樣的黑球和兩個同樣的白球放入下列6個格中,要求同種顏色的球不相鄰,則可能的放球方法共有______種.(用數(shù)字作答)
1 | 2 | 3 | 4 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面為正方形,且底面,過的平面與側(cè)面的交線為,且滿足(表示的面積).
(1)證明: 平面;
(2)當(dāng)時,二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位在2019年重陽節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個景點其中一個去旅游.他們最終選擇的景點的結(jié)果如下表:
男性 | 女性 | |
甲景點 | 20 | 10 |
乙景點 | 5 | 15 |
(1)據(jù)此資料分析,是否有的把握認為選擇哪個景點與性別有關(guān)?
(2)按照游覽不同景點用分層抽樣的方法,在女職工中選取5人,再從這5人中隨機抽取2人進行采訪,求這2人游覽的景點不同的概率.
附:,.
P() | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,圓:,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.
(Ⅰ)求曲線的方程;
(Ⅱ)不垂直于軸且不過點的直線與曲線相交于兩點,若直線、的斜率之和為0,則動直線是否一定經(jīng)過一定點?若過一定點,則求出該定點的坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與橢圓相交于點M(0,1),N(0,-1),且橢圓的離心率為.
(1)求的值和橢圓C的方程;
(2)過點M的直線交圓O和橢圓C分別于A,B兩點.
①若,求直線的方程;
②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線焦點為,直線過與拋物線交于兩點.到準(zhǔn)線的距離之和最小為8.
(1)求拋物線方程;
(2)若拋物線上一點縱坐標(biāo)為,直線分別交準(zhǔn)線于.求證:以為直徑的圓過焦點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com