已知設函數(shù)F(x)= f(x+4),且F(x)的零點均在區(qū)間[a,b] (a<b,a,b) 內,,則x2+y2=b-a的面積的最小值為(    )

(A)                (B). 2                (C).3            (D). .4

 

【試題解析】驗證,

易知時,;時,

所以上恒成立,故上是增函數(shù),又,

只有一個零點,記為,則.

的零點即將向左平移個單位, ,

又函數(shù)的零點均在區(qū)間內,且,故當

時,即的最小值為,即圓的半徑取得最小

,所以面積取得最小值,故選

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調增函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)g(x)=
1
4
f(x)+ax3+
9
2
x2-b(x∈R)
,其中a,b∈R.若函數(shù)g(x)僅在x=0處有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知設函數(shù)f(x)=sinxcosx-
3
cos2x
(x∈R).
(1)求f(x)的最小正周期;
(2)若函數(shù)g(x)=f(x-
π
4
)+
3
2
,求y=g(x)在[0,
π
4
]
上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知設函數(shù)
f(x)=
sinx,(0≤x≤
π
2
)
-
π
2
x+2,(
π
2
<x≤π)
π
0
f(x)dx
=
-
π3
4
+π+1
-
π3
4
+π+1

查看答案和解析>>

科目:高中數(shù)學 來源:上海交大附中09-10學年高一上學期期終試卷 題型:選擇題

 已知設函數(shù)f(x)=,其中P、M是實數(shù)集R的兩個非空子集,又規(guī)定A(P)={y|y=f(x),xP},A(M)={y|y= f(x),xM},下面判斷中正確的個數(shù)為                           

(1)若PM=,則A(P)A(M)=

(2) 若PM,則A(P)A(M)

(3) 若PM=R,則A(P)A(M)=R

(4) 若PMR,則A(P)A(M)R

(A) 1                 (B) 2             (C) 3              (D) 4         

 

查看答案和解析>>

同步練習冊答案