定義:若數(shù)列{an}對(duì)任意的正整數(shù)n,都有|an+1|+|an|=d(d為常數(shù)),則稱{an}為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和”,已知“絕對(duì)和數(shù)列”{an}中,a1=2,“絕對(duì)公和”d=2,則其前2010項(xiàng)和S2010的最小值為
-2006
-2006
分析:利用“絕對(duì)和數(shù)列”的定義寫出數(shù)列的前幾項(xiàng)找出規(guī)律,當(dāng)n為偶數(shù)時(shí)an為0,當(dāng)n為奇數(shù)且不為1時(shí),|an|=2,為使和最小,令非0的數(shù)都取-2,即可求出前2010項(xiàng)和S2010的最小值.
解答:解:∵|an+1|+|an|=2,a1=2,∴a2=0
∴|a3|=2,∴a4=0
∴|a5|=2

∴a1=|a3|=|a5|=…=|a2009|=2,a2=a4=…=a2010=0
為使前2010項(xiàng)和S2010的最小值
∴a3=a5=…=a2009=-2
∴前2010項(xiàng)和S2010的最小值為2+(-2)×2004=-2006
故答案為:-2006.
點(diǎn)評(píng):本題考查新定義,考查數(shù)列遞推式,考查數(shù)列的求和,確定數(shù)列中項(xiàng)的規(guī)律是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>4020的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n為正整數(shù).
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列.
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式.
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{an}對(duì)任意的正整數(shù)n,都有|an+1|+|an|=d(d為常數(shù)),則稱{an}為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和”,已知“絕對(duì)和數(shù)列”{an}中,a1=2,“絕對(duì)公和”d=2,則其前2012項(xiàng)和S2012的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{An}滿足An+1=
A
2
n
則稱數(shù)列{An}為“平方遞推數(shù)列”,已知數(shù)列{an}中,a1=2,點(diǎn){an,an+1}在函數(shù)f(x)=2x2+2x的圖象上,其中n的正整數(shù).
(1)證明數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)及Tn關(guān)于n的表達(dá)式;
(3)記bn=log2an+1Tn,求數(shù)列{bn}的前n項(xiàng)和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•長寧區(qū)一模)定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=x2+4x+2的圖象上,其中n為正整數(shù).
(1)判斷數(shù)列{an+2}是否為“平方遞推數(shù)列”?說明理由.
(2)證明數(shù)列{lg(an+2)}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng).
(3)設(shè)Tn=(2+a1)(2+a2)…(2+an),求Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案