從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機抽取1件,假設事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96.
(Ⅰ)求從該批產(chǎn)品中任取1件是二等品的概率p;
(Ⅱ)若該批產(chǎn)品共100件,從中無放回抽取2件產(chǎn)品,ξ表示取出的2件產(chǎn)品中二等品的件數(shù).求ξ的分布列.
分析:(Ⅰ)利用互斥事件的概率公式,結合事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96,即可求從該批產(chǎn)品中任取1件是二等品的概率p;
(Ⅱ)確定ξ的可能取值,求出相應的概率,可得ξ的分布列.
解答:解:(Ⅰ)記A0表示事件“取出的2件產(chǎn)品中無二等品”,A1表示事件“取出的2件產(chǎn)品中恰有1件二等品”.
則A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1-p)2+
C
1
2
p(1-p)=1-p2

于是0.96=1-p2.解得p1=0.2,p2=-0.2(舍去).
(Ⅱ)ξ的可能取值為0,1,2.
若該批產(chǎn)品共100件,由(1)知其二等品有100×0.2=20件,故P(ξ=0)=
C
2
80
C
2
100
=
316
495
.  P(ξ=1)=
C
1
80
C
1
20
C
2
100
=
160
495
.  P(ξ=2)=
C
2
20
C
2
100
=
19
495

所以ξ的分布列為
ξ 0 1 2
P
316
495
160
495
19
495
點評:本題考查概率的計算,考查離散型隨機變量的分布列,正確求概率是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機抽取1件,假設事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96.
(1)求從該批產(chǎn)品中任取1件是二等品的概率p;
(2)若該批產(chǎn)品共100件,從中任意抽取2件,求事件B:“取出的2件產(chǎn)品中至少有一件二等品”的概率P(B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年全國卷Ⅱ文)(12分)

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機抽取1件,假設事件:“取出的2件產(chǎn)品中至多有1件是二等品”的概率

(1)求從該批產(chǎn)品中任取1件是二等品的概率;

(2)若該批產(chǎn)品共100件,從中任意抽取2件,求事件:“取出的2件產(chǎn)品中至少有一件二等品”的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (07年全國卷Ⅱ理)(12分)從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機抽取1件,假設事件A:“取出的2件產(chǎn)品中至多有1件是二等品”的概率P(A)=0.96

(1)求從該批產(chǎn)品中任取1件是二等品的概率p;

(2)若該批產(chǎn)品共有100件,從中任意抽取2件,x表示取出的2件產(chǎn)品中二等品的件數(shù),求x的分布列

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省廣州東莞五校高三第二次聯(lián)考理科數(shù)學卷 題型:解答題

(本小題滿分12分)

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機抽取1件,假設事件:“取出的2件產(chǎn)品都是二等品”的概率

(1)求從該批產(chǎn)品中任取1件是二等品的概率;

(2)若該批產(chǎn)品共10件,從中任意抽取2件,表示取出的2件產(chǎn)品中二等品的件數(shù),求的分布列.

 

查看答案和解析>>

同步練習冊答案