【題目】已知函數(shù)在處取得極值.
(1)討論和是函數(shù)的極大值還是極小值;
(2)過點(diǎn)作曲線的切線,求此切線方程.
【答案】(1)見解析;(2)
【解析】第一問由函數(shù)在處取得極值.
說明了′(1)= ′(-1)=0,得到a,b的值,并代入原式中,判定函數(shù)的單調(diào)性,得到極值問題。
第二問中,要求過點(diǎn)作曲線的切線,先設(shè)出切點(diǎn)坐標(biāo),然后結(jié)合導(dǎo)數(shù)的幾何意義得到斜率,表示切線方程,再將A點(diǎn)代入方程中得到點(diǎn)的坐標(biāo),求解得到。
解:(1)′(x)=3ax2+2bx-3,依題意,′(1)= ′(-1)=0,即
3a+2b-3=0,
3a-2b-3=0.解得a=1, b="0."
∴(x)=x3-3x,′(x)=3x2-3=3(x+1)(x-1).
令′(x)=0,得x1=-1,x2=1.
若x∈(-∞,-1)∪(1,+∞),則′(x)>0,故(x)在(-∞,-1),(1,+∞)上是增函數(shù).
若x∈(-1,1),則′(x)<0,故(x)在(-1,1)上是減函數(shù).
所以(-1)=2是極大值,(1)=-2是極小值.
(1)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上,設(shè)切點(diǎn)為M(x0,y0)
則點(diǎn)M的坐標(biāo)滿足y0= x03-3x0,
因?yàn)?/span>f’(x0)=3(x02-1),故切線方程為
y-y0=3(x02-1)(x-x9)
因?yàn)辄c(diǎn)A在曲線上,則可知16-(x03-3x0)=3(x02-1)(x-x9)
化簡得到x0=-2,
所以切點(diǎn)坐標(biāo)為M(-2,-2),切線方程為9x-y+16=0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的頂點(diǎn)C、A分別在x軸、y軸上,BC是菱形BDCE的對角線,若∠D=60°,BC=2,則點(diǎn)D的坐標(biāo)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中, ,直線與曲線交于兩點(diǎn).
(1)求的值;
(2)已知點(diǎn),且,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對象,如下圖所示((噸)為買進(jìn)蔬菜的質(zhì)量, (天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計(jì)需要銷售多少天.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤之和的最大值(元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點(diǎn)作直線,使,又與交于點(diǎn),設(shè)直線與橢圓的兩個(gè)交點(diǎn)由上至下依次為, .
(1)若與所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2015高考陜西文數(shù)】隨機(jī)抽取一個(gè)年份,對西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(I)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(II)西安市某學(xué)校擬從4月份的一個(gè)晴天開始舉行連續(xù)兩天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com