【題目】已知等差數(shù)列滿足, .

(1)求的通項公式;

(2)各項均為正數(shù)的等比數(shù)列中, , ,求的前項和.

【答案】(1);(2).

【解析】試題分析:1)求{an}的通項公式,可先由a2=2a5=8求出公差,再由an=a5+n-5d,求出通項公式;(2設(shè)各項均為正數(shù)的等比數(shù)列的公比為qq0),利用等比數(shù)列的通項公式可求首項及公比q,代入等比數(shù)列的前n項和公式可求Tn

試題解析:

(1)設(shè)等差數(shù)列{an}的公差為d,

則由已知得a1=0,d=2.

ana1+(n-1)d=2n-2.

(2)設(shè)等比數(shù)列{bn}的公比為q,則由已知得qq2a4,

a4=6

解得: q=2或q=-3.

∵等比數(shù)列{bn}的各項均為正數(shù),∴q=2.

∴{bn}的前n項和Tn=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點的坐標;若不存在,請說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,M為平面上任一點,A,B,C三點滿足

(1)的值;

(2)已知A(1,sinx)、B(1+sinx,sinx),M(1+sinx,sinx),x∈(0,π),且函數(shù)

的最小值為,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

①“若x2+y20,則x,y不全為零的否命題 ②“正多邊形都相似的逆命題

③“若m>0,則x2+x-m=0有實根的逆否命題④“若x-是有理數(shù),則x是

無理數(shù)的逆否命題

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校有名學生參加學校組織的“數(shù)學競賽集訓隊”選拔考試,現(xiàn)從中等可能抽出名學生的成績作為樣本制成如圖頻率分布表

分組

頻數(shù)

頻率

0.025

0.050

0.200

12

0.300

0.275

4

0.00

合計

1

(1)求的值,并根據(jù)題中信息估計總體平均數(shù)是多少?

(2)若成績不低于分的同學能參加“數(shù)學競賽集訓隊”,試估計該校大約多少名學生能參加“數(shù)學競賽集訓隊”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論不正確的是________(填序號).

各個面都是三角形的幾何體是三棱錐;

以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;

棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;

圓錐的頂點與底面圓周上的任意一點的連線都是母線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為則判斷框內(nèi)應(yīng)填入(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作圓 的切線, 為坐標原點切點為,且.

(1)求的值;

(2)設(shè)是圓上位于第一象限內(nèi)的任意一點,過點作圓的切線,且軸于點,交y軸于點,設(shè),求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統(tǒng)計了她們的數(shù)學成績(成績均為整數(shù)且滿分為分),數(shù)學成績分組及各組頻數(shù)如下:

樣本頻率分布表:

分組

頻數(shù)

頻率

合計

(1)在給出的樣本頻率分布表中,求的值;

(2)估計成績在分以上(含分)學生的比例;

(3)為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?/span>分,乙同學的成績?yōu)?/span>分,求甲、乙兩同學恰好被安排在同一小組的概率.

查看答案和解析>>

同步練習冊答案