【題目】用數(shù)學(xué)歸納法證明“1+2+3+…+(2n+1)=(n+1)(2n+1)”時(shí),由n=k(k>1)等式成立,推證n=k+1,左邊應(yīng)增加的項(xiàng)為

【答案】(2k+2)+(2k+3)
【解析】解:∵用數(shù)學(xué)歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時(shí),
當(dāng)n=1左邊所得的項(xiàng)是1+2+3;
假設(shè)n=k時(shí),命題成立,左端為1+2+3+…+(2k+1);
則當(dāng)n=k+1時(shí),左端為1+2+3+…+(2k+1)+(2k+2)+[2(k+1)+1],
∴從“k→k+1”需增添的項(xiàng)是(2k+2)+(2k+3).
所以答案是:(2k+2)+(2k+3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將序號(hào)分別為1,2,3,4,5的5張參觀券全部分給4人,每人至少1張.如果分給同一人的2張參觀券連號(hào),那么不同的分法種數(shù)是(
A.24
B.96
C.144
D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有6名男醫(yī)生、5名女醫(yī)生,從中選出2名男醫(yī)生、1名女醫(yī)生組成一個(gè)醫(yī)療小組,則不同的選法共有種.(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(3x﹣1)7=a0+a1x+a2x2+…+a7x7 , 則|a1|+|a2|+|a3|+|a4|+|a5|+|a6|+|a7|=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x=0.20.3 , y=0.30.2 , z=0.30.3 , 則x,y,z的大小關(guān)系為( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上是減函數(shù),且f(2)=0,則使函數(shù)值y<0的x取值范圍為(
A.(﹣2,2)
B.(2,+∞)
C.(﹣∞,2)
D.(﹣∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】聯(lián)歡會(huì)有歌曲節(jié)目4個(gè),舞蹈節(jié)目2個(gè),小品節(jié)目2個(gè),其中小品節(jié)目不能連著演出,舞蹈必須在開(kāi)頭和結(jié)尾,有多少種不同的出場(chǎng)順序(
A.480
B.960
C.720
D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={﹣1,1},B={x|mx=1},且A∪B=A,則m的值為( 。
A.1
B.﹣1
C.1或﹣1
D.1或﹣1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x0∈R,sinx0>1,則( )
A.p:x0∈R,sinx0≤1
B.p:x∈R,sinx>1
C.p:x0∈R,sinx0>1
D.p:x∈R,sinx≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案