【題目】如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,M,N分別是AA1,D1C1的中點(diǎn),過(guò)D,M,N三點(diǎn)的平面與正方體的下底面A1B1C1D1相交于直線(xiàn)l.
(1)畫(huà)出直線(xiàn)l的位置,并簡(jiǎn)單指出作圖依據(jù);
(2)設(shè)l∩A1B1=P,求線(xiàn)段PB1的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2) .
【解析】
(1)根據(jù)點(diǎn)線(xiàn)面位置關(guān)系,三個(gè)平面兩兩相交,三條交線(xiàn)的可能情況分析,此題中的情況三條交線(xiàn)必交于一點(diǎn),即可作圖;
(2)利用平行關(guān)系結(jié)合三角形相似可求出PA1,再求出線(xiàn)段PB1的長(zhǎng).
(1)延長(zhǎng)DM交D1A1的延長(zhǎng)線(xiàn)于E,連接NE,則NE即為直線(xiàn)l的位置.
(2)∵M為AA1的中點(diǎn),AD∥ED1,
∴AD=A1E=A1D1=.
∵A1P∥D1N,且D1N=,
∴A1P=D1N=,
于是PB1=A1B1-A1P=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為實(shí)常數(shù)).
(Ⅰ)若為的極值點(diǎn),求實(shí)數(shù)的取值范圍.
(Ⅱ)討論函數(shù)在上的單調(diào)性.
(Ⅲ)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),( )是偶函數(shù).
(1)求的值;
(2)設(shè)函數(shù),其中.若函數(shù)與的圖象有且只有一個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是奇函數(shù),且=10
(1)求的解析式;
(2)判斷函數(shù)在上的單調(diào)性,并加以證明.
(3)函數(shù)在[-3,0)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫(xiě)出答案,不要求寫(xiě)證明過(guò)程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且.
(1)求的解析式;
(2)判斷的單調(diào)性,并證明你的結(jié)論;
(3)解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過(guò)程中,已經(jīng)得到f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( 。
A. B. C. D. 不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四面體中,、、分別是、、的中點(diǎn),下面四個(gè)結(jié)論中不成立的是( )
A.面B.面
C.面面D.面面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com