(提示:請(qǐng)從以下兩個(gè)不等式選擇其中一個(gè)證明即可,若兩題都答以第一題為準(zhǔn))
(1)設(shè)ai∈R+,bi∈R+,i=1,2,…n,且a1+a2+…an=b1+b2+…bn=2,求證:
(2)設(shè)ai∈R+(i=1,2,…n),求證:
【答案】分析:(1)欲證不等式的左式=
=結(jié)合柯西不等式即可得到證明.
(2)先由排序不等式,得:a12+a22+…+an2≥a1a2+a2a3+…+ana1,a12+a22+…+an2≥a1a3+a2a4+…+ana2兩式相加后結(jié)合柯西不等式即可得到證明.
解答:證明:(1)左式=
=
=
(2)由排序不等式,得:a12+a22+…+an2≥a1a2+a2a3+…+ana1,a12+a22+…+an2≥a1a3+a2a4+…+ana2
兩式相加:2(a12+a22+…+an2)≥a1(a2+a3)+a2(a3+a4)…+an(a1+a2),從而

≥(a1+a2+…an2,即證.
點(diǎn)評(píng):本小題主要考查不等式的證明、排序不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(提示:請(qǐng)從以下兩個(gè)不等式選擇其中一個(gè)證明即可,若兩題都答以第一題為準(zhǔn))
(1)設(shè)ai∈R+,bi∈R+,i=1,2,…n,且a1+a2+…an=b1+b2+…bn=2,求證:
a
2
1
a1+b1
+
a
2
2
a2+b2
+…+
a
2
n
an+bn
≥1

(2)設(shè)ai∈R+(i=1,2,…n),求證:
(a1+a2+…an)2
2(
a
2
1
+
a
2
2
+…
a
2
n
)
a1
a2+a3
+
a2
a3+a4
+…+
an
a1+a2

查看答案和解析>>

同步練習(xí)冊(cè)答案