精英家教網 > 高中數學 > 題目詳情

一次研究性課堂上,老師給出函數,甲、乙、丙三位同學在研究此函數的性質時分別給出下列命題:
甲:函數為偶函數;
乙:函數;
丙:若則一定有
你認為上述三個命題中正確的個數有            

2.

解析試題分析:因為,所以函數不是偶函數. 因為函數是奇函數.先研究當x>0時,.所以.所以乙是正確的.由x>0時是遞增的.所以丙是正確的.所以填2.本題解析式中的絕對值需要分類討論,才能更清晰了解函數的解析式.

考點:1.分段函數的知識.2.函數的奇偶性,單調性.3.函數的值域.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

已知函數,設,若,則的取值范圍是 ___ .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數,設,若,則的取值范圍是     .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設函數的定義域為R,若存在常數m>0,使對一切實數x均成立,則稱為F函數.給出下列函數:
;②;③;④;
是定義在R上的奇函數,且滿足對一切實數x1、x2均有.其中是F函數的序號為______.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

>0,若函數=sincos在區(qū)間[-]上單調遞增,則的范圍是_____________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數,若、滿足,且恒成立,則的最小值為                .

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

對于定義在上的函數,有如下四個命題:
① 若,則函數是奇函數;②若則函數不是偶函數;
③ 若則函數上的增函數;④若則函數不是上的減函數.其中正確的命題有______________.(寫出你認為正確的所有命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

若函數同時滿足下列條件,(1)在D內為單調函數;(2)存在實數,.當時,,則稱此函數為D內的等射函數,設則:
(1) 在(-∞,+∞)的單調性為        (填增函數或減函數);(2)當為R內的等射函數時,的取值范圍是                          

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

是定義在R上的奇函數,當時,,則_________.

查看答案和解析>>

同步練習冊答案