已知的頂點(diǎn)的坐標(biāo)為,邊上的中線所在直線方程為的平分線所在直線方程為,求邊所在直線的方程。

解析試題分析:設(shè)B(),B在BD上,所以,所以 B(),
AB中點(diǎn)((),在中線 6x+10y-59="0" 上,
所以,解得=10,所以 B(10, 5)。
所以 AB斜率。
根據(jù)
 ,得 ,,
所以, BC方程為
考點(diǎn):直線方程,直線的夾角公式,中點(diǎn)坐標(biāo)公式。
點(diǎn)評(píng):中檔題,利用中點(diǎn)坐標(biāo)公式,確定得到B的坐標(biāo),進(jìn)一步確定直線的斜率,利用直線的夾角公式,確定直線BC的斜率。主要應(yīng)用了函數(shù)方程思想。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù)x、y滿足(x-2)2+(y-1)2=1,求z=的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩定點(diǎn),為動(dòng)點(diǎn)
(1)若在x軸上方,且是等腰直角三角形,求點(diǎn)坐標(biāo);
(2)若直線的斜率乘積為,求點(diǎn)坐標(biāo)滿足的關(guān)系式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點(diǎn)A(0,1),AB邊上的中線CD所在直線方程為,AC邊上的高BH所在直線方程為.
(1)求的項(xiàng)點(diǎn)B、C的坐標(biāo);
(2)若圓M經(jīng)過不同的三點(diǎn)A、B、P(m、0),且斜率為1的直線與圓M相切于點(diǎn)P
求:圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系xoy的原點(diǎn)為極點(diǎn),OX為極軸,且長度單位相同,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 ρsin(θ+)="0," 求與直線l垂直且與曲線C相切的直線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)求過點(diǎn)且與的距離相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)(,-1);
(2)在y軸上的截距是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩條直線的交點(diǎn),求:(1)過點(diǎn)且過原點(diǎn)的直線方程;(2)過點(diǎn)且垂直于直線的直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖直線lx軸、y軸的正半軸分別交于A(8,0)、B(0,6)兩點(diǎn),P為直線l上異于AB兩點(diǎn)之間的一動(dòng)點(diǎn). 且PQOAOB于點(diǎn)Q

(1)若和四邊形的面積滿足時(shí),請(qǐng)你確定P點(diǎn)在AB上的位置,并求出線段PQ的長;
(2)在x軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案