精英家教網 > 高中數學 > 題目詳情

(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中, 


(1)求四棱錐S-ABCD的體積;
(2)求證:


(1)
(2)根據題意中的線面垂直,得到線線垂直, 同時能根據來得到面面垂直的證明。

解析試題分析:(1)解:

(2)證明:
     

 

 
考點:面面垂直以及體積的求解
點評:解決的關鍵是能熟練的運用空間中的點線面的位置關系來求證,同時結合公式法得到體積的求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在四棱錐中,平面ABCD,底面ABCD是菱形,.

(1)求證:平面PAC;
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知三棱錐O-ABC的側棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.

(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,在多面體中,平面∥平面, ⊥平面,,
 ,

(Ⅰ)求證:平面;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖:直三棱柱ABC中,, ,D為AB中點。

(1)求證:;
(2)求證:∥平面
(3)求C1到平面A1CD的距離。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。

(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABCD,EPC的中點,作PB于點F

(I) 證明: PA∥平面EDB;
(II) 證明:PB⊥平面EFD

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EFEFAB,,HBC的中點.求證:FH∥平面EDB.

查看答案和解析>>

同步練習冊答案