如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線(xiàn)段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
(1)見(jiàn)解析(2) (3) 點(diǎn)M是線(xiàn)段BD上靠近B點(diǎn)的三等分點(diǎn)
【解析】(1)證明 ∵DE⊥平面ABCD,∴DE⊥AC,∵四邊形ABCD是正方形,
∴AC⊥BD,又DE∩BD=D,
∴AC⊥平面BDE.
(2)解 DE⊥平面ABCD,
∴∠EBD就是BE與平面ABCD所成的角,即∠EBD=60°.
∴=.由AD=3,得BD=3,DE=3,AF=.
如圖,分別以DA,DC,DE所在直線(xiàn)為x軸,y軸,z軸建立空間直角坐標(biāo)系,則A(3,0,0),F(3,0,),E(0,0,3),B(3,3,0),C(0,3,0).
∴=(0,-3,),=(3,0,-2).
設(shè)平面BEF的法向量為n=(x,y,z),則即
令z=,則n=(4,2,)
∵AC⊥平面BDE,
∴=(3,-3,0)為平面BDE的一個(gè)法向量,
∵cos〈n,〉===,
∴結(jié)合圖形知二面角F-BE-D的余弦值為.
(3)解 依題意,設(shè)M(t,t,0)(0≤t<3),則=(t-3,t,0),
∵AM∥平面BEF,∴·n=0,
即4(t-3)+2t=0,解得t=2.
∴點(diǎn)M的坐標(biāo)為(2,2,0),此時(shí)=,
∴點(diǎn)M是線(xiàn)段BD上靠近B點(diǎn)的三等分點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練4練習(xí)卷(解析版) 題型:填空題
若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)7-2隨機(jī)變量及其分布練習(xí)卷(解析版) 題型:解答題
由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車(chē)從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為,不堵車(chē)的概率為;汽車(chē)走公路②堵車(chē)的概率為p,不堵車(chē)的概率為1-p,若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響.
(1)若三輛汽車(chē)中恰有一輛汽車(chē)被堵的概率為,求走公路②堵車(chē)的概率;
(2)在(1)的條件下,求三輛汽車(chē)中被堵車(chē)輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線(xiàn)、拋物線(xiàn)練習(xí)卷(解析版) 題型:選擇題
設(shè)F是拋物線(xiàn)C1:y2=2px(p>0)的焦點(diǎn),點(diǎn)A是拋物線(xiàn)與雙曲線(xiàn)C2:=1(a>0,b>0)的一條漸近線(xiàn)的一個(gè)公共點(diǎn),且AF⊥x軸,則雙曲線(xiàn)的離心率為 ( ).
A.2 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線(xiàn)與圓練習(xí)卷(解析版) 題型:選擇題
如圖,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心,且與直線(xiàn)BD相切的圓上或圓內(nèi)移動(dòng),設(shè)=λ+μ (λ,μ∈R),則λ+μ的取值范圍是( ).
A.(1,2) B.(0,3) C.[1,2] D.[1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:選擇題
如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線(xiàn)段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F且EF=,則下列結(jié)論中錯(cuò)誤的是( ).
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值
D.異面直線(xiàn)AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點(diǎn)等練習(xí)卷(解析版) 題型:填空題
如圖,在長(zhǎng)方形ABCD中,AB=2,BC=1,E為DC的中點(diǎn),F為線(xiàn)段EC(端點(diǎn)除外)上一動(dòng)點(diǎn),現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD內(nèi)過(guò)點(diǎn)D作DK⊥AB,K為垂足.設(shè)AK=t,則t的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:選擇題
已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足:Sn+Sm=Sn+m,且a1=1,那么a11=( ).
A.1 B.9 C.10 D.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:解答題
某養(yǎng)殖廠需定期購(gòu)買(mǎi)飼料,已知該廠每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購(gòu)買(mǎi)飼料每次支付運(yùn)費(fèi)300元.
(1)求該廠多少天購(gòu)買(mǎi)一次飼料才能使平均每天支付的總費(fèi)用最少;
(2)若提供飼料的公司規(guī)定,當(dāng)一次購(gòu)買(mǎi)飼料不少于5噸時(shí),其價(jià)格可享受八五折優(yōu)惠(即原價(jià)的85%).問(wèn):該廠是否應(yīng)考慮利用此優(yōu)惠條件?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com