已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求實(shí)數(shù)m的值;
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.
(1)m=2.(2)f(a)+f(c)>2(b).
【解析】
試題分析:(1)由f(0)、f(2)、f(6)成等差數(shù)列,
可得2log2(2+m)=log2m+log2(6+m), 3分
即(m+2)2=m(m+6),且m>0,解得m=2. 5分
(2)由f(x)=log2(x+2),
可得2f(b)=2log2(b+2)=log2(b+2)2, 6分
f(a)+f(c)=log2(a+2)+log2(c+2)=log2[(a+2)(c+2)], 7分
∵a、b、c成等比數(shù)列,∴b2=ac. 8分
又a、b、c是兩兩不相等的正數(shù),
故(a+2)(c+2)-(b+2)2
=ac+2(a+c)+4-(b2+4b+4) 10分
=2(a+c-2)=2>0, 12分
∴l(xiāng)og2[(a+2)(c+2)]>log2(b+2)2. 13分
即f(a)+f(c)>2(b)
考點(diǎn):本題考查了數(shù)列與函數(shù)的綜合運(yùn)用
點(diǎn)評(píng):對(duì)于此類(lèi)問(wèn)題除了要求學(xué)生掌握等差(等比)數(shù)列的性質(zhì)之外,還有靈活運(yùn)用作差法判斷大小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;
(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說(shuō)明理由.
(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的圖像在點(diǎn)A(l,f(1))處的切線l與直線x十3y+2=0垂直,若數(shù)列的前n項(xiàng)和為,則S2013的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省、蘭溪一中高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(1)已知函數(shù)f(x)=x-ax+(a-1),。討論函數(shù)的單調(diào)性;
(2).已知函數(shù)f (x)=lnx,g(x)=ex.設(shè)直線l為函數(shù) y=f (x) 的圖象上一點(diǎn)A(x0,f (x0))處的切線.問(wèn)在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個(gè)?,若沒(méi)有,則說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州十四中2011-2012學(xué)年高三2月月考試題-數(shù)學(xué)(理) 題型:解答題
已知函數(shù)f (x)=lnx,g(x)=ex.
(I)若函數(shù)φ (x) = f (x)-,求函數(shù)φ (x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù) y=f (x) 的圖象上一點(diǎn)A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.
注:e為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com