如圖所示,矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有數(shù)據(jù):
a=
3
2
;②a=1;③a=
3
;建立適當(dāng)?shù)目臻g直角坐標(biāo)系,
( I)當(dāng)BC邊上存在點(diǎn)Q,使PQ⊥QD時(shí),a可能取所給數(shù)據(jù)中的哪些值?請(qǐng)說(shuō)明理由;
( II)在滿足( I)的條件下,若a取所給數(shù)據(jù)的最小值時(shí),這樣的點(diǎn)Q有幾個(gè)?若沿BC方向依次記為Q1,Q2,…,試求二面角Q1-PA-Q2的大。
分析:( I)建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),設(shè)出點(diǎn)Q的坐標(biāo),進(jìn)而得到向量PQ,QD的坐標(biāo),再結(jié)合PQ⊥QD即可求出結(jié)論;
( II) 由(Ⅰ)知a=
3
2
,此時(shí)x=
1
2
x=
3
2
,即滿足條件的點(diǎn)Q有兩個(gè);再結(jié)合PA⊥平面ABCD即可得到∠Q1AQ2就是二面角Q1-PA-Q2的平面角,再代入向量的夾角計(jì)算公式即可.
解答:解:( I)建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)分別為:
A(0,0,0),B(a,0,0),C(a,2,0),D(0,2,0),P(0,0,2)
設(shè)Q(a,x,0)(0≤x≤2),…(2分)
PQ
=(a,x,-2),
QD
=(-a,2-x,0)
,
∴由PQ⊥QD得
PQ
QD
⇒-a2+x(2-x)=0⇒a2=x(2-x)

∵x∈[0,2],a2=x(2-x)∈(0,1]…(4分)
∴在所給數(shù)據(jù)中,a可取a=
3
2
和a=1兩個(gè)值.…(6分)
( II)  由(Ⅰ)知a=
3
2
,此時(shí)x=
1
2
x=
3
2
,即滿足條件的點(diǎn)Q有兩個(gè),…(8分)
根據(jù)題意,其坐標(biāo)為Q1(
3
2
1
2
,0)
Q2(
3
2
,
3
2
,0)
,…(9分)
∵PA⊥平面ABCD,
∴PA⊥AQ1,PA⊥AQ2
∴∠Q1AQ2就是二面角Q1-PA-Q2的平面角.…(10分)
cos?
AQ1
,
AQ2
>=
AQ1
•AQ2
|
AQ1
|×|
AQ2
|
=
3
4
+
3
4
3
=
3
2

得∠Q1AQ2=30°,
∴二面角Q1-PA-Q2的大小為30°.…(12分)
點(diǎn)評(píng):本題主要考察直線與平面所成的角.解決本題第一問(wèn)的關(guān)鍵在于結(jié)合二次函數(shù)的性質(zhì)得到a可取a=
3
2
和a=1兩個(gè)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某市擬在道路的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段ABC,該曲線段為函數(shù)y=Asin(ωx+φ)(A>0,ω>0,
π
2
<φ<π),x∈[-3,0]的圖象,且圖象的最高點(diǎn)為B(-1,3
2
);賽道的中間部分為
3
千米的水平跑到CD;賽道的后一部分為以O(shè)圓心的一段圓弧
DE

(1)求ω,φ的值和∠DOE的值;
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個(gè)頂點(diǎn)在扇形半徑OD上.記∠POE=θ,求當(dāng)“矩形草坪”的面積最大時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P為AB的中點(diǎn)且△ABC與矩形BCDE所在的平面互相垂直,CD=2.
(1)求證:AD∥平面PCE;
(2)求三棱錐P-ACE的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P為AB的中點(diǎn)且△ABC與矩形BCDE所在的平面互相垂直,CD=2.
(1)求證:AD∥平面PCE;
(2)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南京市金陵中學(xué)高考數(shù)學(xué)預(yù)測(cè)試卷(2)(解析版) 題型:解答題

如圖,某市擬在道路的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段ABC,該曲線段為函數(shù)y=Asin(ωx+φ)(A>0,ω>0,<φ<π),x∈[-3,0]的圖象,且圖象的最高點(diǎn)為B(-1,3);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O(shè)圓心的一段圓弧
(1)求ω,φ的值和∠DOE的值;
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個(gè)頂點(diǎn)在扇形半徑OD上.記∠POE=θ,求當(dāng)“矩形草坪”的面積最大時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省高三預(yù)測(cè)卷2數(shù)學(xué) 題型:解答題

(本小題滿分14分)

如圖,某市擬在道路的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段ABC,該曲線段為函數(shù)y=(A>0,>0,),x∈[-3,0]的圖象,且圖象的最高點(diǎn)為B(-1,);賽道的中間部分為千米的水平跑到CD;賽道的后一部分為以O(shè)圓心的一段圓弧

 (1)求,的值和∠DOE的值;

(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,如圖所示,矩形的一邊在道路AE上,一個(gè)頂點(diǎn)在扇形半徑OD上.記∠POE=,求當(dāng)“矩形草坪”的面積最大時(shí)的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案