過圓x2+y2=1上一點作切線與x軸,y軸的正半軸交于A、B兩點,則|AB|的最小值為( 。
A、
2
B、
3
C、2
D、3
分析:用截距式設(shè)出切線方程,由圓心到直線的距離等于半徑以及基本不等式可得:
a2+b2
a2+b2
2
,令t=
a2+b2
,可得t的最小值為 2,進而得到答案.
解答:解:設(shè)切線方程為
x
a
+
y
b
=1
(a>0,b>0),即 bx+ay-ab=0,
由圓心到直線的距離等于半徑得
|0+0-ab|
a2+b2
=1,
所以ab=
a2+b2
a2+b2
2
,令t=
a2+b2

則有t2-2t≥0,t≥2,故t的最小值為 2.
由題意知  t=|AB|,
故選C.
點評:本題考查點到直線的距離公式和基本不等式的應用,體現(xiàn)了換元的思想(在換元時應該注意等價換元).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|
OA
+2
OB
|的最小值是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則OA+8•OB的最小值是
2
65
2
65

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:填空題

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|+2|的最小值是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:填空題

過圓x2+y2=1上一點P作圓的切線與x軸和y軸分別交于A,B兩點,O是坐標原點,則|+2|的最小值是   

查看答案和解析>>

同步練習冊答案