【題目】已知,,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時直線的方程.
【答案】(1)(2)的最小值為1,此時直線:
【解析】
(1)用直接法求軌跡方程,即設(shè)動點(diǎn)為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;
(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,
設(shè),,則可得,,由求出,
將直線方程與聯(lián)立,得,求得,計算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.
(1)設(shè),則,即
整理得
(2)設(shè):,將其與曲線的方程聯(lián)立,得
即
設(shè),,則,
將直線:與聯(lián)立,得
∴
∴
設(shè).顯然
構(gòu)造
在上恒成立
所以在上單調(diào)遞增
所以,當(dāng)且僅當(dāng),即時取“=”
即的最小值為1,此時直線:.
(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,若從第二項起的每一項均大于該項之前的所有項的和,則稱為數(shù)列.
(1)若的前項和,試判斷是否是數(shù)列,并說明理由;
(2)設(shè)數(shù)列是首項為、公差為的等差數(shù)列,若該數(shù)列是數(shù)列,求的取值范圍;
(3)設(shè)無窮數(shù)列是首項為、公比為的等比數(shù)列,有窮數(shù)列,是從中取出部分項按原來的順序所組成的不同數(shù)列,其所有項和分別為,,求是數(shù)列時與所滿足的條件,并證明命題“若且,則不是數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某游樂園的一個摩天輪半徑為10米,輪子的底部在地面上2米處,如果此摩天輪每20分鐘轉(zhuǎn)一圈,當(dāng)摩天輪上某人經(jīng)過處時開始計時(按逆時針方向轉(zhuǎn)),(其中平行于地面).
(1)求開始轉(zhuǎn)動5分鐘時此人相對于地面的高度.
(2)開始轉(zhuǎn)動分鐘時,摩天輪上此人經(jīng)過點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)且橢圓的短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線過右焦點(diǎn),且與橢圓分別交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得,恒成立?若存在求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】政府為了對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計,得到如圖列聯(lián)表,已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是;
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)請完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想方法說明有多少的把握認(rèn)為不買房心理預(yù)期與城鄉(xiāng)有關(guān)?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棉花的纖維長度是棉花質(zhì)量的重要指標(biāo).在一批棉花中抽測了60根棉花的纖維長度(單位:),將樣本數(shù)據(jù)制作成如下的頻率分布直方圖:
下列關(guān)于這批棉花質(zhì)量狀況的分析不正確的是( )
A.纖維長度在的棉花的數(shù)量為9根
B.從這60根棉花中隨機(jī)選取1根,其纖維長度在的概率為0.335
C.有超過一半的棉花纖維長度能達(dá)到以上
D.這批棉花的纖維長度的中位數(shù)的估計值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,短軸長為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn),之間).
(1)求橢圓的方程;
(2)若,求實(shí)數(shù)的取值范圍;
(3)若射線交橢圓于點(diǎn)(為原點(diǎn)),求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com