(本題滿分14分)如圖,已知平面
平面
=
,
,且
,二面角
.
(Ⅰ)求點
到平面
的距離;
(Ⅱ)設(shè)二面角
的大小為
,求
的值.
(1)
(2)
(Ⅰ)如圖,作
⊥
于
,
⊥
于
,連接
,知
,在
中,易得
,在
中,
,
……7分。
(Ⅱ)如圖,在
平面內(nèi),過點
作直線
的垂線,垂足為
,與直線
交于
點,易證
為二面角
的平面角,由已知得
,可求得
,
,
,
……
分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,四棱錐
的底面
是邊長為1的菱形,
,
E是CD的中點,PA
底面ABCD,
。
(I)證明:平面PBE
平面PAB;
(II)求二面角A—BE—P和的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖所示,平面
PAD⊥平面
ABCD,
ABCD為正方形,
PA⊥
AD,且
PA=
AD=2,
E,
F,
G分別是線段
PA,
PD,
CD的中點。
(1)求證:
BC//平面
EFG;
(2)求三棱錐
E—
AFG的體積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在五棱錐
中,
底面
,
,
,
。
(1)證明:
平面
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
矩形ABCD(AB≤BC)中,AC=2
,沿對角線AC把它折成直二面角B-AC-D后,BD=
,求AB、BC的長.
翰林匯
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
命題1 長方體中,必存在到各頂點距離相等的點;
命題2 長方體中,必存在到各棱距離相等的點;
命題3 長方體中,必存在到各面距離相等的點.
以上三個命題中正確的有 。 )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,ABCD-A
1B
1C
1D
1為正方體,則以下結(jié)論:
①BD∥平面CB
1D
1;
②AC
1⊥BD;
③AC
1⊥平面CB
1D
1 其中正確結(jié)論的個數(shù)是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在四棱錐
中,
,
,
底面
,
為
的中點,
.
(Ⅰ)求四棱錐
的體積
;
(Ⅱ) 求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
正四面體ABCD的棱長為1,E在BC上,F(xiàn)在AD上,BE=2EC,DF=2FA,則EF的
長度是_________。
查看答案和解析>>