已知函數(shù),且任意的

(1)求、的值;
(2)試猜想的解析式,并用數(shù)學(xué)歸納法給出證明.

(1)(2)

解析試題分析:(1)

                                     4分(2)猜想:                                                  6分
用數(shù)學(xué)歸納法證明如下:
①當(dāng)n=1時(shí),,∴猜想正確;                                         7分
②假設(shè)當(dāng)
那么當(dāng)
所以,當(dāng)時(shí),猜想正確;
由①②知,對(duì)正確.                                                13分
考點(diǎn):本小題主要考查歸納推理和數(shù)學(xué)歸納法的應(yīng)用.
點(diǎn)評(píng):應(yīng)用數(shù)學(xué)歸納法解決問(wèn)題時(shí),要注意從n=k到n=k+1推導(dǎo)時(shí),一定要用上歸納假設(shè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是定義在上的函數(shù),當(dāng),且時(shí),有
(1)證明是奇函數(shù);
(2)當(dāng)時(shí),(a為實(shí)數(shù)). 則當(dāng)時(shí),求的解析式;
(3)在(2)的條件下,當(dāng)時(shí),試判斷上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若,,求證:;
(2)若實(shí)數(shù)滿足.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為奇函數(shù),且在處取得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過(guò)點(diǎn)(可作函數(shù)圖像的三條切線,求實(shí)數(shù)的取值范圍;
(Ⅲ)若對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)。
(1)求在點(diǎn)處的切線方程;
(2)求在區(qū)間的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
(Ⅱ)求函數(shù)當(dāng)時(shí)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(I)求x為何值時(shí),上取得最大值;
(II)設(shè)是單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案