精英家教網 > 高中數學 > 題目詳情
已知拋物線的焦點恰好是雙曲線的右頂點,且漸近線方程為,則雙曲線方程為                  
       

試題分析:∵拋物線的焦點坐標為,即。雙曲線的漸近線方程為,即,∴雙曲線的方程為
點評:熟練掌握圓錐曲線的性質是解決此類問題的關鍵,屬基礎題
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數,使,且.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的兩焦點是F1(0,-1),F2(0,1),離心率e=
(1)求橢圓方程;(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,分別是雙曲線的左、右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段為直徑的圓外,則雙曲線離心率的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,是橢圓的兩個焦點,焦距為4.若為橢圓上一點,且的周長為14,則橢圓的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦距為2,則的值為(    )
A.3B.C.3或5D.3或

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;
(2)當實數取何值時,?并求出此時直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,已知橢圓的方程為 ,A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=45°,則橢圓的離心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知焦點在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案